CHAPTER ONE

Differentiation

1. Preliminaries

We begin wit
prelude to more precise assump

in the next section.
The notion of a function of a complex variable is intuitively

very clear. Given a complex number z, there is defined uniquely
another complex number f(z). This is usually given by a
formula, for example f(z) = 22 or f(2) = €.

We also wish to consider such formulae as f(z) = 1/z or the
power series f(z) = 1+z+4z%...to give functions. These
differ from the preceding examples in that they are not defined
for every value of z. The formula f(z) = 1/z is not defined for
2 = 0 and the power series is not convergent (and hence the
sum is not defined) for |z| > 1. However they have in common
with f(z) = z? and f(z) = €” the property that, for any given

value of z, if f(z) is defined then f(2) is unique. This is not so for

the expression z* which has two values for z#0 or for log z
ome-

whicht has many values for z#0. Such expressions are $
times called ‘many-valued functions’ and they will be considered
separately later. In the remainder of the text a function will

ingle-valued wherever it is defined.

always be assumed to be si
If we write z = x+iy where x, y are real and f(z) = u+iv

where u, v are real, then u, v are real functions of x, y. For
this reason we write f(2) = u(x, ¥)+iv(x, y) to illustrate that

u, v depend on x; .

h an informal discussion on functions as a
tions which will be explained

+ W. Ledermann, Complex Numbers, in this series, p. 57.
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DIFFERENTIATION

sxaMmpLE 1. If f(z) = 2°, then 2f(2)2= (x+iy)?
— x?—y2+2ixy and so u(X, y) = 22—y, v(x, ) = 2xy.

EXAMPLE 2. If f(2) = €5 thent f(z) = e**?
= ¢* (cosy+i sin y) and so u(x,y) = €*cos y, v(x,y) = e*siny.

2. The Domain of Definition of a Function
As we have seen, we wish to consider functions which are not

defined everywhere. The set of complex numbers where a
function is defined will be called the domain of definition. We
wish to put certain restrictions on this set and these ideas are
discussed in this section. It is convenient to consider the situa-

tion pictorially by identifying complex numbers with points

in the plane.
If z, is a complex number, the e-neighbourhood of z is the

set of all points z such that |z—z,| <& where eis a given positive

real number.
In figure 1, the e-neighbourhood of z, is the set of points in the

shaded disc not including the boundary.

A
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Figure 1

+ W. Ledermann, Complex Numbers, in this series, p. 56,

THE DOMAIN OF DEFINITION OF A FUNCTION

A set S of points in the complex plane is said to be open if
every point Zo in S has an e-neighbournood which consists
entirely of points of S. For example the set C of points such
that |Z| < 1is open, forif zyisin C, let |zo| = 1—8 where0< 8<1,
then the e-neighbourhood of z, where 0 <e<$ lies completely

in C.

-
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Figure 2

A stepwise curve in the plane is a polygonal curve, all of whose
straight segments are parallel either to the real or imaginary
axis. ' T T

A set S of points in the complex plane is said to be connected
if any two points in § may be joined by a stepwise curve which

lies entirely in S. |
z, are typical

The shaded area in figure 3 is connected where z;,
points.
Remark. The reader is perfectly justified in asking why we
11



DIFFERENTIATION

}
SN
\\\\\\\\;\\\§

SO
%5\]. L\,\\\zx\\

R

N

Figure 3

use a stepwise curve in the definition. The answer is simple; it
is because it is the most useful (see Theorem 5.1. below).
Actually if the set concerned is open, then it can be proved that
any type of curve will do in the definition.

A (non-empty) connected open set is called a domainf. For
example the set given by |z| <1 (figure 2) is a domain. Other
examples are given by the whole plane or the whole plane with

a finite number of points missing.

Fundamental assumption. A complex function will always
be assumed to be defined on a domain. This is called the domain
of definition of the function concerned. Thus a function of a
complex variable will be a rule which assigns to each complex
number z in the domain of definition a unique complex number
f(@).

This rule is usually given by a ‘formula’ such as €* or 1/z and,
in common with the usual practice, we will often refer to the

function by this formula.

T Some texts use the word ‘region’ instead of ‘domain’.
12

THE DOMAIN OF DEFINITION OF A FUNCTION

Examples of functions are

@) € defined for all z,

(ii) 1/z, defined for z#0,
(iii) 1+z+2z*+ ..., defined for |z| <1.

As we have remarked, log z is not a function in the sense that
s not single-valued. We recall that

log z = log |z|+i (arg z+2nk)

it i

where log |z| is the usual real logarithm, —7<arg z<= and
& is an integer}. We can consider log z to be a function in
the following manner: let the ‘cut-plane’ consist of the complex
plane with the negative real axis (including zero) removed:

AN

Figure 4

Now choose a fixed value of k and then log z is a single-
valued function in the cut-plane. For example the principal

value given by k = 0,
Log z = log |z| +iarg z

where now —w < arg z<m.

t W. Ledermann, Complex Numbers, p. 57.
13
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Note that the cut-planeis a domain, so now log z is a function

according to our definition.

In a similar manner we can consider z* to be a function in the
cut-plane. Write z = re® where —m <0< in the cut-plane
then choose the value z# = r#e". This is a function and it i
usually referred to as the principal value. On the positive real
axis where 6 = 0, it reduces to the positive square root r*, The
other value z* = rte’%*™ jg also a function in the cut-plane
On the positive real axis, it reduces to rtei™ = —r? the negativg;

square root.

As a further example of a function defined in the cut-plane,
we define the principal value of z* to be e* Log% where o is any *

complex constant. Since Log z is uniquely defined in the cut-
plane, z°® is well-defined, for example the principal value of
;i _ gilesi — ghi®2) = ¢~™2, For an integer n we have "%~
— (¢ws?)" = 7" which coincides with the usual definition. For

— 1. 7 — re® where —m <0<, then et1o87 = gtlosr+3i0

oa =7,
%64 which corresponds to the principal value of z* as defined

above.
Why do we insist a function is defined on a domain? Why
not just on an arbitrary set ? The reason will become apparent
as we progress. Roughly speaking, when we discuss continuity
or differentiation of a complex function at a point z,, we would
like the function to be defined near z, (i.e. in some e-neigh-
bourhood) and so require the region of definition to be open
The reason for connectedness is more subtle. It pays dividends.
when the function concerned is differentiable. If the function
were defined on a set which consisted of several disjoint part
the function could ‘behave quite differently’ on each piec Paé ”
example we could have f(z) = z for |z]| <1, f(2) = ¢* fore. >
and not defined for 1<|z|<2. However if the set wh ]2
function is defined is a domain (in particular connect. Zre the
the function is differentiable, then this imposes quite ) al.ld
conditions on it. Indeed, it can be shown that if we kneo i
values of the function on part of the domain, it is detern‘z;il;
z 14; ; } ?

= | 2| Q
5\ C
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LIMITS OF CONTINUITY

everywhere! We leave a precise statement and proof of this
remarkable result until Chapter III, but mention it to justify
the introduction of a ““‘domain of definition”.

Pictorially it is impossible to represent a complex function
completely and we cannot draw a graph. This is because a
complex number is represented as a point in two-dimensional
real space. So we would need two dimensions to represent the
values of z and two for f(z), making a total of four. Since we
have only two-dimensional paper at our disposal, the best we
can do is imagine two complex planes and as z moves about in
the first, f(z) moves about in the second. Of course the only
values of z for which f(z) is defined are those in the domain of
definition so we could illustrate this by drawing the domain of
definition in the first plane (denoted by D and shaded):

f
\ 7N ﬁ .f(Zz
Z
. u".
of(.z,)
Figure 5

3, Limits and Continuity

The definitions of these concepts for complex functions are
the same as in the real caset. Hence the reader familiar with the

real case should find no difficulty.

DEFINITION 3.1. We say that f(2) tends to the limit / as z

+ P. J. Hilton, Differential Calculus, this series, pp. 10, 11.
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DIFFERENTIATION

if the distance from f(2) to / remains as smal] 4

tends to Zo : '
we please sO long as z remains sufficiently near to zy, whie
remaining distinct from Zo. _
We write f(z)—>] as z—>Zp OF lim f(z) = I. Of course the
z—2Zg

distance from f(2) to I is |f2)— apd saying z is sufficiently
near to z, means that |z—2z,| is sufficiently small. So definition

3.1 could be phrased in terms of real numbers by defining
f(z)—1 as z-zo to mean | f(z)— 1|0 as [z—2o|—0. In precise
terms, given ¢>0 (no matter how small), we can always find
5>0 (where 5 may depend on ¢) such that 0<|z—z <

implies | f(z)—1| <e. .
We make the usual remark that lim f(z) = I does not mean

zZ—2Zy

the same as f(z,) = /. The value of fi (z,) is irrelevant in deter-
mining the limit because we have expressly stated in definition
3.1. that z remains distinct from z, in defining the limit. It
is not even necessary for f(zo) to be defined, for example

h'ms—llz = 1 but pn e is not defined for z = 0.
z

z0 Z

We have the usual rules for limits:

RULES. If f(z)—/and g(z)—>k as z—>z,, then as z—z, we have

() f(2)+g(@)—~>1+k,
(i) f(z)—g(z)~1—k,
(i) f(2)g(2)—~>Ik,
(iv) if k#0, f(2)/g(2)—~>I/k.
These results can either be proved from first principles as in
the real case, or by resolving each complex number into its
real and imaginary parts and arguing as for limits of sequencest.

. DEFINITION 3.2. We say f(z) is continuous at zy if f(z,)
is defined and lim f(z) exists and equals f(z,). °

z—Zy
t W. Ledermann, Complex Numbers, p. 47,
16

LIMITS AND CONTINUITY

For example f(z) = |2| is continuous everywhere. This is
pecause 0< ||z] — |20l < |2— 2|, s0 if z is close to z,, |lz—2z,| is
small and [f(2)— f(zo)| = ||z|—|2o|| is small or even smaller.

This shows that /1 (z!»f(zo) as z—z,.
If we have a continuous function, we can imagine the situa-

tion pictoria]ly, for if we consider a point z which approaches
z, then the image f(2) approaches f(zo).

. 020 i
7 ‘, \\»// A~»— —of(Zg)
P4 N
z "~
— i \'I -2
)

Figure 6

Continuity of a complex function isnomore involved than the
real case. Using rule (i) for limits, we see that if f(z) and g(z) are
continuous at z,, then as z—>z,, we have f(2) + g(2)—>/(20) +&(20)
showing f(z) + g(z) is continuous at z,. Similarly the difference,

product and quotient of continuous functions are continuous.

Also if g(z) is continuous at z, and f(w) is continuous at
wo = 8(zo), then f(g(z)) is continuous at z,. This is because
z->z, implies g(2)—g(zo) = Wo and so f(g(2)—>f(wo) =1(8(20))-

We can reduce the theory of continuity of a complex function
to continuity of real functions of two real variables. Suppose
w = u+iv, where u, v are real, then we first observe that w—w is
equivalent to u—u,, v—>v, both together. To see this, note that

0< Ju—1uo| </ {(—to)*+(—20)*} = [w—wy|
and so |u—u,| is never greater than |[w—wq|. If w—>w, then
|[w—wo|—>0 implying |u—uy|—>0 and so u—u,. Similarly v—v,.

17



DIFFERENTIATION
Conversely if both #—4o and v—v,, then
lw—wo| = \/{(u‘uo)2+(”'”o)2}—'>0
and so w—>wp. Using this fact we may prove:

TrEOREM 3.1. If f(z) = u(x, y) +iv(x, y) then the complex
function f(z) is continuous at Zo = x.0+z' ¥, if and only if the
real functions u(x, y), v(%, y) are continuous at (*0s Yo).

Proof. (i) Suppose f(z) is continuous at z, = xo+iy,.
If x—>x, and y—¥, then 27, by the above remark and so by
continuity of f(z), we have f(2)—/(zo). Now apply the remark
again to w = f(z) = u(x, y)+iv(x, y) then w—>wo = u(x,, y,)
+iv(xg, ¥o) and so u(x, y)—>u(xo, ¥o)» U(X, ¥)—>0(Xo, ¥o). This
shows that u(x, ¥) and v(x, y) are continuous.

(i) Conversely, suppose u(x, y) and v(x, y) are continuous
at (xo, ¥o). If z—zo, then both x—>x, and y—>y, implying

u(x, y)—u(xo, o) and v(x, y)—>v(xo, o) bY continuity. This gives
u(x, y)+iv(x, y)—=u(xo, yo) +iv(Xos ¥o)

that is to say f(z)—>f(zo) and so f(z) is continuous.

EXAMPLE 1. arg z is continuous in the cut-plane.
This is a basic result that we will need later and it is quite
tricky to prove. The method we give uses a theorem from real

variable theoryt.
Suppose that t = h(0) (< 6<p) is a real-valued monotonic

strictly increasing function where A(x) = a, h(B) = b, then we
may solve this to find 6 in terms of £, § = g(r) (a<t<b)
Furthermore, if 4 is continuous, then so is g. For examplc:

4 w ar
= —_— — 11 ) .
sin @ 2 <0< 7)1 such a function, taking every value

in —1<¢<1 and so 6 = sin~ 't is well-defined and continuous

1 Scott & Tims, M. 7 j ; T
i ims, Mathematical Analysis, Cambridge University py s, p.

18
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. p ™ . - w
for —1<2<1, taking values in -3 <sin ‘tsi,

First consider the domain given by x>0.

P_— Y
T s -1 y m™
where we choose — §<sm J—(xz ) <§ »
But /(*+ y?) = |z| is continuous and non-zero for x>0,
hence ¥/|z| is a continuous function of x, y for x>0. Thus
sin~1(y/lz]) is a continuous function of a continuous function
and hence continuous. This shows that arg z is continuous in

the domain x>0.

Similarly we may show that arg z is continuous for y>0 by

considering arg z = COS_I(ﬁ) where we choose

0<cos™ ! —;23(—1;— <m. (Note that cos is monotonic de-
JEE+Y)
creasing here.) Finally arg z is continuous for y <0 where we

x o - 5
have arg z = cos™! W) , this time choosing

— 'x .
—7<cos 1(m <0. The three domains x>0, y>0,
y <0 together coveér the cut-plane and the result is proved.

EXAMPLE 2. Log z is continuous in the cut-plane.
This follows from example 1 and theorem 3.1 because Log z =
log |z| +i arg z. Note that the real part log |z| = log (x*+y)*
is continuous for (x, »)#(0, 0) and the imaginary part is
continuous in the cut-plane. This gives the required result.

4, Differentiation
As with limits and continuity, differentiation of a complex

19
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function is defined in the same way as the real case.t (Nog;
however that the derivative is no longer the gradient of a gr, ice
because we cannot draw tpe graph of a complex function )Ph

DEFINITION 4.1. The derivative at z, of the function @)
is
) . @1z
o) — tim QL)
zZ—1Zp Z—2Z
If we make a change of variable z—z, = h we also have
f’(zo) — limf(20+1;1) -f(ZO) .
h—0 (

|

EXAMPLE. sz) = 22
2_,2
Fee) = tim Eo =20
h

—0

= ,I,T; (2zo+h) = 2z, .

Often we use the alternative notation. w =j?zs\| and iv_v = f'(2)
[ dz ’

Of course f'(z,) may not exist As . ivi
| . As a trivial example, if
f(0) }&;ﬂ;(gz) =l 1 for z#0, then £'(0) does not exislt). For
h#0,——12 = = i
p p and this does not tend to a finite limit as
h—0. We now show that a differentiable function is neces-

sarily continuous (thus we i
. may in i i
function cannot be diﬁ'erentiable})l. o Biek & Elieoutirigus

THEOREM 4.1. If f(z) is diff i
continuous at z,,. erentiab

Proof. lim () ~/(z)) = lim LO=/a))

_ hme) 27z Z—2z,

zszg Z2—2Zg

le at z,, then f(z) is

Zp)

lim (z—z,) by the rule for limits

z—zy

T P. J. Hilton, Differential Calculus, p. 12,
20
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= f'(20)-0
= 0.
So lim f(z) = f(Z0) and f(z) is continuous at Zo.
We n:;}foverify the usual rules for differentiation as in the real
caset:
RULES.

0 2 (4f)+BeE) = AT@+BEE) where 4, B are
Z
(complex) constants.

@ 2@ 8@ = FO D
i) & (s = U0 8~ E N6 870

@) 2 fs@) = S EEN @

d -
EXAMPLE. If n is an integer, = (2" = nz""%.
d . (z+h)-—z
Proof by induction. For n = 1, —(z) = lim (———l— =1
dz h—0 h
and so the formula is true.

: d n+ly _ (N
Assume it for »n, then e ") = 7 (z"2)

=z" % @)+ ‘—; (z™z by (ii)
=z"4nz"" 'z
= (n+1)z" and so the formula is true for n+1 and by
induction true for all positive integers.
Using (i) and (iv), we may calculate the derivative of a rational
t P. J. Hilton, Differential Calculus, pp. 16-19.
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. anzn-i- +a0 . f
GnZ T -+ - 7704 the same way, for example
function B Z,,,+ T+,
dztl _ 4oy @42 (z+1) - @ +2)}/(z +2)?
L+2  |dz

= (22 +2-22-22)/(Z +2)?

= 2-22-)[(+2)?

A rational function is differentiable wherever it is defined
(i.e. whenever b,z"+ .. .. t by #0).

DEFINITION 4.2. A function of a complex variable is said
to be analytict if it is. differentiable everywhere in its domain of

definition.
For example rational functions are analytic.

5. The Cauchy-Riemann Equations

We now come across the first property that distinguishes the
complex theory from the real. When calculating f"(zo) =

lim j%_ﬂ , we may let z approach z, in any fashion.
Hﬁet us calculate f'(z,) in two distinct ways:

(i) Let zy = xo+iyy, z = Xo+h+iy, where h is real, and
write f(z) = u(x, y)+iv(x, y) thenf'(z,) = lim M

z—zg Z—2Z,
— lim {f (o +h)+iyo) —f(xo+iyo)}

h—0 h

= 15 {u(xo +h, yo) +iv(xo +h, o) —u(Xo, o) — iv(xy, yo)
h—0 h

= T {”(xo +h, J’(})l) —u(xo, J’o)+ i(w(xo+h, Yo)— v(x,, yo))}
h—0 h

T Some texts use the word ‘regular’ instead of ‘analytic’,

22
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THE CAUCHY-

)
: 30
.__Z_j_lf.{.i_a_v. ('Q ’D)C d;t/
ox  0x |
(ii) Let Zo = Xo+i¥0, 7 = Xo+i(yo+k) where k is real, then
as Z—>Zgs We have k—0 and so
f '(20)
o fO o)
- z—z9 Z 20
f(xo+’(J’o+k))"f(xo+lyo)
- ik

k—-)O
) {u(xo, Yo+ k) +iv(xo, yo+k)—u(xo, Vo) —iv(xo, }’o)}
= lim ik
k—0

lim v(xg, Yo + k) —v(xo, }’o)__ i(u(xo, Yo+Kk)—u(xo, Yo))
B k—+0 k k
_ o ﬁ‘/ :/ D_EQ -B——%Q\

3};, yf N g

Since f(z,) is uniquely defined no matter how we let z approach

z,, We must have
u ov Ov ou

Sf(zo) = 3—x=5};—15;'

Comparing real and i 1mag1nary parts, we find that
u_ow o w |
ox 3y > ox

These are called the Cauchy-Rlcmann equatxons which hold
for differentiable complex functions. They give a simple way of
asserting a function is not differentiable.

EXAMPLE. f(z) = |z|. Here u(x, y) = /& +y2),v(x,3) = 0,
giving:

ou 2x ou 2y 30_0_30
ax  JOE+y) dy JEP+Y) ox "

23
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Hence if either x#0 or y#0, at least one of the equation,

ou ov v ou

u_ o % _ _ = does not hold. If both x = O and y <

x o ax Y ndy =,

. . Ou Ou 0 Returni '

then substituting 10 -, P we get 5" eturning to first principleg
K

u(k, 0)—u(0, 0)

ou
ox o k=0 k k_f; k
.|
= lim —-
k-0 K

Since
k| _{ 1 for k>0

% |-1fork<0,

.. k d
the limit of ITI as k—0 does not exist and so a_u (0, 0) is not
X

_ ov
defined. Similarly -3—;(0, 0) does not exist and the Cauchy-

Riemann equations cannot hold at the origin.
' Thus f(z) = |z| is not differentiable anywhere but it is con-
tinuous everywhere!

The read?r who may be upset by this seemingly unnatural
state of affairs may be consoled by the fact that as well as z", the
stanc.iard functions, €7, cos z, sin z etc. are all analytic. As a
possxl?le proof of this fact we might use the Cauchy-Riemann
equations. This meets with a small obstacle.

If f(z) = u(x, y)+iv(x, y) is a complex function such that the

. L ou ov ou v
partial derivatives —, — ~- exist and satisfy the

Cauchy-R ox’ ox” oy’ oy

auchy-Riemann equations, then f(z)

: ’ need not be dj .

}lél)ali IE?r example the (rather synthetic) function gfirfz'?lr?

Cauc; - ll{ 'x = 0ory =0, butf(z) = 0 otherwise satisfies thy
y-Riemann equat'lons at the origin (all partial derjyat; #

are zgro) but it is not differentiable there because it i oo

continuous. 115 not even

24
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ou w u v
— exist, ||

THE C

However if the partial derivatives g 50 5,7 5,
catisfy the Cauchy-Riemann equations and are all continuous, '
then we can infer that the ﬁ'mctlon 1s.d1ﬁ‘erentnable‘ The proof
of this fact will be omitted since we w311 not use the fesult later.
However, as an example of its possible use, consider f(z) =
X g+ = ¢* cos y+ie* siny.

v o . ou
g—:=e"cosy=5-};, 5;=e’smy= ‘5};

and all the partial derivatives are continuous, SO by the above
remark, € is differentiable with derivative
7 e
fﬁ+i—af = éE—i—i‘ = e*cos y+ie*smy = e.
ox ox oy 9y
. d

ave verified the equation —‘(5—) = ¢, already
In the next section we will demon-
power series expansion

Thus we h

well-known in its real form.
strate this in a different way using the

for €. .

We close this section with the following:
THEOREM 5.1. If f(z) is a function of a complex variable
0 for all z in D implies

defined on a domain D, then '@
f(2)is constant. ST
Remark. If f/(z) = 0 and the function were defined on a set
that was not connected, this theorem need not be true. The
ch connected piece, but the

function could be constant on €a
constants need not be the same. For example on the set
|z <1 or [z[>2, define f(z) = 0 for |z]<1 and f(z) = 1 for
|z|>2 then f '(z) = 0, but f(z) is not constant.

Proof of theorem. If f'(z) = O then

ou Qv Ov iau
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implying
ou o ou o

=== =0

ox ox 9y Oy

No ou 0i ou
Wop = Ole o (x,70) = 0 for fixed y,. From real variab]e

theoryt we have u(x, y,) = constant (since i

; > ) u(x’ yO) 18 a re
function of th(‘e real variable x). This means u(x, y) is consta:tl
along any horizontal line segment y = y, (= constant) in the

domain of definiti imi 4 o 0 gl
efinition. Similarly >~ 0 implies that u(x, y) is

constant along any verticle line segment x = x, (= constant) in

o v

the domain of iti
of definition. Also from 7 = 5} = 0 we reach

gec(s)amtz cgr;lusions for v(x, y). Hence f(2) = u(x, y)+iv(x, y)
nstant along each horizontal or vertical e

domain of definition. sesment n the
deg;jttj a domain is connect.ed, (here comes the full force of the
oef beor-l),. and any two points zy, z, in the domain of definition
m n);a. Joined by a stepwise curve which lies entirely in the
dom Sm (refer baclf to figure 3). Since f{(z) is constant along
) egment.of this curve, we must have f(z,) = f(z,). Since

1> 22 are arbitrary points in the domain, f(2) is constant

6. Power Series

CO+CIZ'+ CZZ " * o e o }-L‘,,Z +

:(r)};irel z is a complex variable and Cos €1, €,

numlf, ex numbers}. We recall that ejther there. i-s.aare I?X'Cd

s er R (called the radius of convergence) such that tﬁ?:lt;_ye
Series

tP.J. Hi]tbn Differential
A Calculus, p. 37.
1 W. Ledermann, Complex Numbers,pp. 49.
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utely for |z| < R and diverges for |z| >R, or the
series CONVerges absolutely for all z (in which case we formally
vﬁi’t/ek — oo)f. Thus in our terminology the power series is a

function With domain |z] <R.

converges ,absol

). 1+z4+2%+ ... +2"+ .... has radius of
= 1, and for |z| <1, we have
.=0-2".

exAMPLE (i
convergence R
l+z+2%+ ... +2"+ ...

EXAMPLES (i))—(v) all have infinite radius of convergence.

2

zZ Z
@) & =1+ttt

23z

(iii) sin z = z—3—!+§— .

z
(iv) cos z = 1——2—!+n—- .....

It has already been noted that inside the circle of convergence
power series may be manipulated in much the same way as
For example two power series may be added

The same is true of differentiation. A power
by term inside the circle of

polynomialsy.
term by term.

series may be differentiated term
convergence and if f(z) = CotCrzHeZ+ ... HCZ"+ .. for
|z| <R, then f'(z) = ¢;+2¢22+ + - - +ne,z* '+ . . . for

ult is somewhat technical and may be
that a power series is differentiable
definition and so it is an analytic

|z| < R. A proof of this res
found in Appendix I. Note
everywhere in its domain of

function.
ExAMPLE (i). f(2) = l+z4+2%+ .. +2"+ .. [z]<],
then f/(z) = 1422+ .. ... -+ +nz" '+ .. |z|<L

W. Ledermann, Complex Numbers, p. 50.
1 W. Ledermann, Complex Numbers, p. 51.
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Since f(z) = (1—2)~* in this case, differentiating we hav,
f'(z) = (1—2z)"% and so ¢

(1-2)"2 = 1422+ ... +n2" '+ .. [7<1.
2

T z2 _Z z"
@) € = T+t5+ .o+t o

3 5
(i) sinz = z— 42— .. ...
31751

PR (sin z) = cos z.
. .. d
Similarly (iv) % (cosz) = —sin z.

EXAMPLE (v). Since w = Log z is defined by the equation
" ] dw 1
z = e”, we can use this to show — = — i
' . | w Z=3 The function w = Log z
1s continuous in the cut-plane and so as Z—>z,, we have w—w,

dw _
— lim 8%~ Log 7
42 oy z—z,
. W—w
= lim w__o
wow € —e”o

s e¥—e%) -1
= lim
wowo ( W— Wy

d
=1/— ("
dw(e)

= 1/e¥
= 1/z.
28
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d o s
EXAMPLE (vi). ps (z%) = az*~! in the cut-plane.

This is because Z° = e?L%% 7 = f(g(z)) where f(w) = e”,

— o Log z and so zd;(z") = f'(g(2)g'(2) = "5,

N R

£(@)
« % = az® .
z
Notice that the derivative of a power series ff- again a power
series with the same domain of definition. This means we can
Jifferentiate it again, indeed we can differentiate it as many
times as we like, so that if

z

f(2)= cotcizre e+ HGT

then
') = e 420,24+ 3027 Haeu P+ +ne, 2 4.
F(2) = 2¢,+6c3z+12ca2% + . - . +n(n—1)c,2" %+ ...
f™(z2) = 6c3+24c,z+ . ... +n(n—1) (=2 3+ ...
etc.
Putting z = 0 in these equations we find £(0) = ¢o, £(0) -
¢y = 1ley, f7(0) = 2¢; = 2ley, f"(0) = b¢cs = 3.!c3. and in
general f®(0) = n!c,. This means that by substituting these
values in the series we may write it in its usual Taylor-

MacLaurin form:
f(2) = cotez+erz?+ oo FGZF e
f©_ fO f™©)
= f(0)+ 7 z+—2!—zz+ e AT gl T

More generally we may consider a power series centred on

Zy:
f(2) = ap+ay(z—2z)+ . ... +a,(z—zo)"+ - . . for [z2—z| <R.

In this case we have:
29
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£1@) = ay+2,z—20)+ -+ F1&(E=20)' 2z

etc.
and we find f ™(z,) = nla,.

This gives:

PROPOSITION 6.1. If f(2) = ap+a(z—2z,)+ . . .
a,(z—2zo)"+ - . . . for [z—2o| < R, then fis differentiable as n;any

; (n)
times as we please for |z—z,| < Rand @, = f ('Zo)
n!

We remark at this stage that power series seem to be ve
special. They are not only differentiable, we can diﬁ'erentiaz
as many times as we please. In the real theory it is possible to
invent functions which are differentiable once, but not twice
(e.g. f(x) = 0 for x<0 and f(x) = x? for x>0. Here f'(x) = 0
for x<0 and f'(x) = 2x for x>0. Note that /(0) = 0 cal-
culated from either side. However f”(0) does not exist, bein
0 cal.culated from the left and 2 calculated from the ’right§

It is a very pleasant (and surprising) fact that in the com Ie;(
theory,-ﬁ' a function is analytic (i.e. differentiable once evI; -
where in its domain of definition) then it is differentiable r:s
many times as we please. We will demonstrate this fact later
(pages 55-56). How is it proved >—By using power series o

EXERCISES ON CHAPTER ONE
1. Write f(z) = u(x, y)+iv(x d
the following cases: () and find v ") in saciiof
(@) z2+2z (i) 1/z (z#0) (i) sin i
_ _ z  (iv) z/(e? -
(v) Log z in the cut-plane  (vi) |z|2 (vii) arg z(in thgle)c(z;‘6 o
2. In exercise 1, differentiate (i) —(). S,

30

(@ In exercis

. Suppose that f'is

. (i) Substitute

. Use(l—2)2=1+2z+322+ ... +nz" 1+

POWER SERIES

ou ou ov v
i 18—y — o 5y = y
o 1-0d), edlauls ax’ oy’ ox oy for (x, »)#
(, 0. Hence show that |z)2 is not differentiable for z#0. What
’ ¢ z = 07 (Hint: use first principles).

happens @
a 0 oy v
e and hence show that

by In 1 viD, caleulate =2, = 200 o7

arg z is not differentiable anywhere.
e following cases, draw a sketch of the given set and

. In each of th ' 3 ! o
domain where z is subject to the given restriction:

say if it is a
@ lz—11<2 (@) lz]<1 (i) x<—1or x>1 where z = x+iy
@iv) z#1 where tis realand <0 (v) 1<|z| <2

an analytic function such that f(2) is always real.

Use the Cauchy-Riemann equations to prove that f is constant.

2
w = €** in the equation %+k2w =0 (k#0) to

A, such that et and e*% are solutions. Show that

ﬁnd Al;
AeMZ + Be*2* is also a solution where A, B are complex constants.
Use the same method to find solutions for
3 2
d2w 3dw (iii) d_li_’_ﬂ+4_¢!_w_4w —o.

iii
dz3 dz2 dz

...|z] <1to find, by

differentiation, a power series formula for (1—2z)4 valid for

(ll) Td;’—z——'jd—z—“*'zw =0

lz| <1.
. Consider f(z) = 1+Z°‘(°‘-1) <o ’ .(@—n+1) o
ni
n=1

Prove that the series is absolutely convergent for |z| <1 and that

f'(z) = af(2)/(1+2). Consider #(2) = S) and show that
(1+2)°

¢'(z) = 0 for |z|<1. Hence conclude that f(z) = (1+2)* for

lz| <1.
z4 .
is absolutely convergent for

23 g3
. Show =z——F———F 0.
1@ 23 4

|z] <1 and that f'(z) = (1+2)"L
Hence conclude that f(z) = Log (1+2) for [z| <1.
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CHAPTER TWO

Integration

1. Contours

If ¢(7), Y/(¢) are continuous real functions of the real variable
7 defined in an interval a <7< p, the equation

2() = () +i(t) (@<t<p) W

determines a pathﬁ in the complex planet. Thus a path is a

continuous function defined on the interval aSt@faﬁﬁg
values in the complex plane. The initial and final points are
z(«), z(B) respectively and the path is said to be closed if
z(x) = z(B). As t increases, the point z(7) traverses a curve in
the complex plane from z(«) to z(B).

!
)~ z(1)

|

Figure 7

T This is the same definition a: i -
) S a pat i
Multiple Integrals by W, Ledermg;r]:, 1lJn lthe W phfian gl o
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CONTOURS
in the complex plane given by z(f) for

f points 10 th :
<Th : ﬁs?; cc:)alllgd the track, Two different paths may have the *~
:a:nte\track, for example the paths
. T
Zl(t) = COS t+isint (OQtSE) (2)
1-12  2it
z,(8) = ﬂ_’p*‘l—_ﬁi 0<r<l) 3)
both determine the track in figure 8:
A
—

Figure 8

For this reason, if we refer to a pictorial representation of a
curve and wish to talk about the path, then we should also
specify the function which determines it. For example we will
choose the standard function which represents the unit circle

as a path to be

z(t) = cos t+isint 0<t<2n). “)
More generally, the circle centre zo, radius r will be
o) = zo+re*]  (0<1<2m). ©)
The line segment frém zy towz; will be
2(f) = z;(1-0+zpt  (0<t<1). ©)
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We sometimes refer to the
path as a ° :
track and call ¢ the ‘parameter’, PRT stz
The opposite path to (1) is the path

zo(f) = z(x+B—1)

o ST HetEoD) e
otice tt}at as t increases, z,(f) traverses the ot
z(#), but in the opposite sense. For example thes(a)l

to (2) is
w0 = (Gt i1

= sin 7+icos ¢ 0<t<s
( T2 ®

A path is said to b :
d e smooth if ¢'(), ' '
conti » ¥(2) exist

smooItl;llozS c(f;ioa-g.t <B. The paths (2)-(6) and lzg)azi arﬁ
ks ur is a path which consi s a

of sm ; onsists of a/finite!
ooth pieces. For example the following paté s 2eé§;£ber
ur:

)

Pposite path

2 . . T

z(t) = '
t+it (ISISZ)
i
Figureg
34

CONTOURS

is a contour
A Jordan conto¥!

2(5) = PO+ O (a<t<Pp)
, implies z(t,) # 2 t,). Thusa Jordan contour has
such that b2 - A closed Jordan contouris aclosed contour

: tions.

Il/(’«;eltf;at —<1, <t <B implies z(t;) #2(t2)- In this case there
su: w0 self-intersections other than the coincident endpoints.
ar

An example i8 given by the unit circle
z(f) = €0S t+isint 0<1<2m).

E
N

Figure 10

The Jordan curve theorem states that a closed J ordan contour

divides the plane into two domains, one bounded (called the
interior) and one unbounded (the exterior).

The reader who relies on his geometric intuition may feel that
this result is patently obvious. For example the interior of the
unit circle in figure 10 is certainly given by |z[<1 and the
exterior by |z| > 1. For every particular Jordan contour we meet

in this text, the result will be clear. However it is possible to

draw ‘maze-like’ J ordan curves such as:
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(ﬁ

—

Figure 11

A proof of the theorem must be written so as to include
every possiblity which may arise and it is not surprising that this
is very difficult. For this reason the proof is omitted.

2. Contour Integration

As in the real case, we wish to discuss integration of a complex
function. There is no immediate analogue to the symbo]
2 f(z) dz where fis a complex function and z,, z, are complex
numbers. This is because we may consider Zy, Z, as points in the
plane and the symbol 22 f(z) dz does not specify how z varies
between z, and z,. To do this, the integral is defined along a
contour y from z, to z,. In general this will depend on the
~ choice of y and so we use the notation [, f(2)dz.

Note that we require f'to be defined everywhere on the track
of y. Equivalently, if £ is defined in the domain D, we could
ask that y lies in D (meaning, of course, that the track of y lies
in D). This is to be preferred, because then W€ can visualize a
pict}ire of the domain with (the track of) y lying in it.

F1‘1-st we define an integral along a smooth path. Let £ be 5
continuous complex function defined in a domain p and
suppose that y is the smooth path z(r) = x(O) +iy(r) (e<rg B)
where y lies in D, Since v is smooth, z'(f) = X'(0+iy'(s) exists’
and is continuous for a </ <PB.

36

CONTOUR INTEGRATION

pefine o

P dz
J' 1) dz = j 1@ % d
7 (z) = u(x y)+iv(xy), we have
i 2 = ulx,
Y anfg(zf(t)) = u(x(®), Y(O)+ivx(®), YD)
= u(t)+i()
uation (1) becomes
" [ 1) dz = [[ @) +i20) O+ O
J.yf(z) dz = J.ﬂ (gx’—_qy')dt-i-if: (gy’+r_:x') d 3

imaginary parts, and calculate two real integrals.
im

and §

@

i.e.

sxAMPLE 1. Integrate z* along the smooth path y given by
2() = t+it?  (0<t<]).
Since z'(f) = 1+2it, we have
[ 2z = [2 +iey? (1 +20de
= J': (2 =5tHdt+i f; (42 =2r%)dt
= [§t3—zs]g+i[t‘—§t"’]g
= 3(Gi—1).

- .
EXAMPLE 2. Integrate 1/z around the unit circle C given by

z(f) = cos t+isin ¢ (9$ t$21r):
Since z'(f) = —sin t+icost =1

f 1/zdz = J‘z'll (cos t+isin 1)~ " i(cos t+isin t) dt
c 0
37

(cos t+i sin t), we have
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. 2=
=i, dt
= 2umi.

If ¥* is the opposite path to y, we have
B
f@) dz = —d
L ‘ SCtB=1) © a1 ar

Put «+8—1 = s, then the integral becomes

: d ds dt
J; Sz(s) 7 @) T D

* d
= L S(z(s)) 7 @) ds

N d
= - f SE6) 2 (=) ds

ie. R
Jr‘f(z)a’z= _f f@)dz. | @
: ?
Now suppose y i SO ‘l
Y 18 a contour. T :
number of smooth paths S he: ); nc(;n;:;stds fci>f a finite
*oVn efine

frf(z)dz=fmf(z)dz+.... +fv f@dz 5

EXAMP Y glven
LE 3. Integrate 22 along the contour y given b
y
(OStSl)

z(z)={’ .
I+i(-1)  (1<s<2)
2 1
fvz iz = ! CAd+ [T (A iG— 1), gy
= [4°]i + a- [
) L fl( 2)dr+i [* (21— 12y gy
= 3+ [2-2h il —3p)2

= 3(i—1).
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ing @ (5) we have the following rules for contour
Usin ’

integratiOﬂi
1. Ifyis composed of two contours 7y, ¥2,

RULE

v

Figure 12

e e —

then |f, 7@ _‘f'ff [, f@) dz+ [, () dz.

RULE 2. If y* is the opposite contour to y, then
e,

tour integral is unchanged when we change
where h(a) = «, h(d) = B
d h’(u) is continuous for

The value of a con
the parameter ¢ = h(w) (a<u<b),
h is (strictly) monotonic increasing an

a<u<b. We then have
B dz ’ dz dt b dz
= —dt = — —du= — du.
[ ez [ s a [(rosm= | mog
This is analogous to the real casef, and may be used to simplify

| the calculation.

|
We could consider two contours to be equivalent for the

t W. Ledermann, Integral Calculus, p. 12
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purposes of integration if they are related to each other },
change in parameter as above. Two equivalent contours pyy,
the same track and are traversed in the same direction g4 the
parameter increases. A particularly simple change in Paramete,
is given by h(u) = mu+c where m, ¢ are real constaptg and
m>0. This is called a /inear change and evidently satisfieg the
required conditions. By a suitable linear change in Parametey
we could replace a contour by an equivalent one defined on any
parametric interval we please. For example ¢ = (B—)u+4
changes the parametric interval from « SISBto0<u<],

3. The Fundamental Theorem

If f is the derivative of an analytic function, then the calculation

of [, f(z) dz is very simple indeed, for we have (analogous to
the real case):

THE FUNDAMENTAL THEOREM OF CONTOUR INTEGRA-
TION. Suppose that fis a continuous function defined in the
domain D. If fis the derivative of an analytic function F in D,
and y is a contour in D starting at zy and ending at z,, then

[ 1) dz = Fe)-FGz). |

_ \L\\\Z'\\\\
N
Figure 13 |
40

THE FUNDAMENTAL THEOREM
= u(x, y)+iv(x, y), F(z) = U(x, y)+

proof- Wflitzu{,'ggse that y is given by z(t) = x(t)+iy()
j x’y) an =Z1’z(ﬂ)=22: -
ZZ (é t<P); wl;gfe js(;gg the Cauchy-Riemann equations for F,
Since f = £
we have o .3V_£K_-iq ‘
F; - u+iv = 5;+l_3; = 3}’ ay
oU v v _ _6_(_]
ey ey v=—= "
andso# = 57 = 3, ox ay
Thus

f(z)dz = Ji (u+iv)(x'+iy") dt

U Blov , oV )
= ’ L j —x'+— dt.
= —3—x'+—y)dt+zj (axx+ayy

ox 3}’ a

a

dUu oUdx 3_({5)_?
But we havet 7 = T ax dt

rav, (P,
and so ff(z)dz=£l 7 dt+zJ:' dtd
Y

= F(z(8))— F(z(=)
= F(z;)— F(zy), as required.

If f = F'in D, then Fis called a primitive of f 11; D_.z:? ;,)r}ml=t1;"§
is unique up to an additive constant, beca. use if f t—in Y) .
‘in D, then F{—WFZ’ = 0and so Fy —.F2 is con§ta1tno n D e a
" Ot;viously the simplest way to integrate 1§

+ P. Hilton, Partial Derivatives, pp. 12, 13.
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jr 22 dz = J(1+i)* = 3(1—-9),

This integral has already been calculated i
oanten 5, for certain
. zgﬁ generally, if n is an integer, ns —1, then 2" _
= n+1)' This holds for all n>0 and for z0 if ng -2
Hence if y is a contour not i |
passing through ig z
starts at z; and ends at z,, then ¢ B the origin whicy

n _25+1 zn+1
LZ = o A,

COntours

n+l n+l

In particular, if y is a closed contour, we have z; = z, and
2
Lz"dz =0 (n#—1).

This illustrates the followi
ing ¢
tal theorem: g consequences of the fundamen-

Co i i
anaIYtI.{OIf:LAR‘Y 3.1. If f is the continuous derivative of an
Ic function, then for any contour y in the domain of

definition of f, [, /(z) dz de
’ end ;
1ok i, e Parti lvﬂar Contouf_ s only on the endpoints and

Cor . .

analyticoflll;zg:n 3t. h2 I;‘ S is the continuous derivative of an
, then for any c/ : :

of definition, fy 7) = 0. y closed contour y in the domain

Proof of 3.2. [,f(2)dz = F(z,)—F(z,) = 0, since 2y =2
= z,.

Warning. Not eve i
: ry continuous functi :
Fo . lon has a iti
o ; tsi;;ch gunctlons the fundamental theorem does fgimltlve.
and the Olll) y way to evaluate the integral is by direct calculapply
€ basic definition. For such functions the imegrala;lon
oes

depend on the :
path, and t
not be zero. he integral round a closed curve may
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. .+ 2 domain D and f = F', we will prove later
If F1s an&iﬁl;’li also analytic. This remarkable theorem
age 59 f fis not analytic, then it cannot have a primitive F.
nalytic in D, it need not have a primitive defined
D. For example f(z) = 1/z in the
nts except the origin. If had a
0 for any closed contour y in D.
= cost+isint(0<7<2m),
0. This shows that

THE FUN

shows that 1

e out the whole of

D consisting of all poi
n D, then [,1/zdz =b -

it circle C given by z(Z
But for the unit circle .
we know (example 2) that [¢ 1/z dz = 2mi#

no primitive can exist.

domain
rimitive 1

We recall that 1/z = di (Log z) in the cut-plane, but this does
2

not lead to a contradiction since the unit circle crosses the
d so does not lie completely in the cut-plane.

negative real axis an _
Notice the striking difference between z" (where n 1s an
integer, n# — 1) and z~1, in that - vy o
—— — -~ S = UmMr o &
2riifn = —1,
I Z"dz = { . ‘
' e 0 otherwise. |

This result is responsible for much of the theory in Chapters II,

III of Functions of a Complex Variable II.
We conclude this section with an inequality which will prove

useful later:

THEOREM 3.3. If y is a contour of length L and | f@)|<M
on the track of y, then

} [ iG] dzl <ML.
Proof. If y is given by z(¢) = x() +iy(t) (x<t<p), then we
recallt that the length of y is given by
L= [P @+ @Y di = [ 170 d.

1 W. Ledermann, Multiple Integrals, p. 4.
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Assuming the inequality

[P d|< [ 10 at ©
for a complex function g of a real variable ¢, then
[, 7@ d = |[raen ) a
< [P \few) 2@ ar

B T,
< L Mlz'(H)| de | vob wivwapg )
,U

= ML
To verify (6), we use a simple trick.
Let [£g(r) dt = Re'® where R, O are real, R>0. Then

R = '[z e ®g(t)dt = f i U(t)dt+iff V(1) dt

where
e Og(t) = UW)+iV ().

Since R is real, J2 V() dt = 0. But now, by the real casef,
since U(r) < |g(7)| we have

B [
R = L U@)dt< L |g(?)| dt, as required.

REMARK. An upper bound M for |f(z)| on the track of y can
always be found. We have not developed the technique for a neat
proof, but we sketch an outline of a proof as follows:

The function m(f) = | f(z(£))| is acontinuousreal-valued function of
1 for « <t <. By continuity at «, m(f) must be bounded for « <7 <o +
where £>0. Let xo be the upper bound of all points x in\a<\ < ]
such that m(t.) is bounded in « <7< x. By continuity at X0 m(t)\x it
be bounded in « <t <xy. By hypothesis we have Xo<p. ,We car::(s):

have xo < g because the continuity of m(7) would imply that m(r) is

T W. Ledermann, Integral Calculus, p. 6.
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unded in 2 neighbourhood of xo, i.e. for |f—x| <8 where 5>0.
?};us we would have m(#) bounded for «<t<xo+3 (by the larger
ds in «<t<Xxo, Xo<t<xo+8). This contradicts the

of the boun : .
definition of Xo- Hence xo = B and since m(f) is bounded for
o <1<Xo, We have the desired result.

4. Cauchy’s Theorem

ection we were discussing conditions under which
[ f(2)dz=0 for a closed contour y. If fis assumed analyticin a
domain containing ¥, this need not be true. For example we
have seen that [¢ 1/z dz#0 where C is the unit circle z (f) =
cos t+i sin t (0<z< 2m). The significant factor here is that
1/z is not analytic everywhere inside C. (It is not defined at the

In the last s

origin.)

caucHY’s THEOREM. If f is analytic in a domain D and
y is a closed Jordan contour in D whose interior also lies in D,

then T 1




INTEGRATION

very deep result, but an outline will be given at the enqg
section. In the original proof, Cauchy himself nee
assume that not only was f analytic (i.e. /” exists thro
D) but that f’ was continuous. He gave several proofs
which used the Cauchy-Riemann equations. ,

of thig
ded to
ughout
one of

L f(@dz = J.y (u+iv) (dx+idy)

- L (udx—v dy)+iL © dx+u dy).

Let A4 be the set of points inside and on the track of y. Then
Green’s Theoremf states that under suitable conditions

oQ @opP
ax’a—y

30 oP
Pd dy) = —_———
J.,,( x+ Q dy) J:L(h ay)dxdy.

If we assume f” is continuous, this implies the continuity of

va_u ou ov ov
o’ By’ a)C,%).Hence

ov ou
f(Z)dz=—J o || (22
y ) ax+ay dx dy+i ) 5_5} dx dy

= 0 by the Cauchy-Riemann equations.

including the continuity of P(x, y), O(x, y), , we have

It is possible to give a fairly elementary proof of Cauchy’s
Tﬁeoreﬁl without assuming that f” is continuous in the case
where the track of y is a triangl is given i i
w y gle. The proof'is given in Appendix

This seemingly innocuous version of the theorem has a
consequence. A domain D is said to be a star-domain if t
a point z; in D (called a star-centre) such that for ever

strong

here is

Y other

T W. Ledermann, Multiple Integrals, p. 38. |
46

CAUCHY’S THEOREM

¢ zin D, the who_le_straight line segment joining z, to z lies

fxf III;. Examples of star-domains are drawn in figure 15:
in -

Inside a star-domain an analytic function always has a primi-
tive: T ——

PrOPOSITION 4.1. If f is an analytic function definedin a
star-domain D, then we may construct an analytic function F
defined in D such that F’ = f.

Proof. Denote by [z;, z,] the contour 2(t) = zy,(1—0D+z3t
(0<¢<1) which describes the straight line joining z; to z3.
If z, is the star-centre of D and z, is in D, then [zo, Z,] lies in
D and we define

Fe) = [, . f@d

We will prove F' = fand so Fisa primitive for f.

Since D is open, there is an &, >0 such that for |h|<e; we
have z, +his in D, and evidently the line [z, z; +#] lies in D.
By Cauchy’s Theorem for a Triangle (Appendix II), we have

f[lo.zn]f(z) dz+J‘[z1. n-Hu]f(z) dz+f[:1+h.zo]f(z) da =0
47
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INTEGRATION

Figure 16

and so F(z; +h)—F(z)) = j e /@ A2 j SOz

- I[z,,zi+h]f(z) dz.

Keeping z; constant, we have Jtzs. 2.+ f(21) dz = f(z1)h and
this gives
F(z;+h)—F(z =
1 - ( 1) _f(zl) — J. ’{f.(ihf;(ZI—)}:dZ (h#O).
[z1,21+h]

S.ince £ is analytic in D, it is certainly continuous at z, and so
given >0, we have | f(z)—f(z,)| <e for z in a neighbourhood
of z,. Also the length of [zy, z; +#] is |h| and so for sufficiently
small & we have

F(z,+h)—F(z,) e
h —flzy)| < m b =e.
Since ¢ is arbitrary, this implies
. F(z,+h)—F(z,)
11 =
hf}) h f(zy)

ie. Fi(z)) = f(zy).

CAUCHY’S THEOREM

since Z1 is an arbitrary point in D, this completes the proof.

As immediate consequences of this proposition and corollaries

3.1,3.2 of the fundamental theorem of contour integration, we
R o

have:

COROLLARY 4.2. If f is an analytic function defined in a
star-domain D, then for any contour y in D, T, f@- dz depends
only on ‘the end-points Tz"‘" i st R A !,-;,5 o !’“‘”"“
T V \‘Or anal funct o Store
COROLLARY 4.3. If fis analyticin a star-domain D and y T
is any closed contour in D, then [,f(2) dz = 0.

en (o)
e
__—_—‘—___——-

We may use corollary 4.2 to sketch a proof of Cauchy’s
Theorem. First note that an open disc given by |z—zo|<risa
star-domain. If y is a contour in an arbitrary domain D, it is
always possible to subdivide y into a finite number of sub-
contours yy, . - - » ¥, Where each y, lies in an open disc D, which
itself is contained in D. (The proof is omitted.) Let z,_,, 2z,
be the initial and final points of y,.

Since D, is a star-domain, by corollary 4.2,

[ S0 = [ eSO
49
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If P is the polygon with sides [z, z,], [z,, z,], . . .

vy Z
then [z, 2],

[f@d=3 | fydz = [, f)a.

r=1

Now suppose y is a closed Jordan contour in D wh
interior also lies in D. To show [, f(z) dz = 0, it is suﬂiciese
to prove [pf(z) dz = 0 for the closed polygon P. To do thiIl t
we may draw in extra lines joining vertices of P, makins’
triangular contours Ay, . . .., A, such that .

(i) The track and interior of each A, lies in D,

(i) [p/(2) dz = ilh,fm dz.

—

——
J/ ZOSZrT \\\\\

Figure 18

In any particular case this is geometrically obvious and as in
figure 18, the integrals along the additional lines cancel in
opposite pairs. Note, however, that it is difficult to write down
a general rule as to how this is done. Assuming its validity, by
(1) and Cauchy’s Theorem for a triangle we have [, f(z) dz ; 0
and by (ii) we have [ f(z) dz = 0. Hence [, £(z) dz = 0

This concludes our discussion on Cauchy’s Theorem. ‘
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EXERCISES ON CHAPTER TWO

ises 1-8 integrate the given function along the contour
I‘(lt ef'?_,_,_,-,z 0<t<l). (Use the Fundamental Theorem of
() =

Integration wherever possible.)

Contour
1. Rz 2 123 3. 4z3+z9¢* 4 1z 5 2 6. z
;. sinzz 8 = %2 (a# —1).

9-11, integrate the given function around the unit

[n exercises .
cos t+isint 0<t<2n).

circle z(f) =
9. 1/z2 10. |z 11. Z.

12. Iff(@=cotciz+ .... +caz"+ . ... for |z] <R, prove F(2)
+1

- 0024.535? N i e is absolutely convergent for |z|<R.
2 n

Use the result of Appendix I to show F'(z) = f(2) for |z]<R. If yis
a contour in |z|] <R, starting at the origin and finishing at zo, show

Cuzs-i-l
n+1

(This states a power series may be integrated term by term inside the
circle of convergence.)

J-f(z)dz=cozo+%zj+...+ + s
y
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CHAPTER THREE

Taylor’s Series

1. Cauchy’s Integral Formula

TeeoreM 1.1. Suppose that f is an analyua function
defined in a domain D. Let y be a closed Jordan contour in D
whose interior lies completely in D. If vy is described anti-
clockwise (as the parameter increases) and z, is a point 1n51de ¥,
then

o) = o f 9 ,
i Zo

This is Cauchy’s Integral Formula.

Proof. Let C, be the circle centre z,, radius e in the standard
parametrization z(¢) = zo+ ee' (0< 1< 2m), where & is small so
that the track of C, is inside that of y. |

/4

A OB

Figure 19
Make tw.o cross-cuts from the track of C, to that of y and
parametrize them, making two Jordan contours I';, I", where
I',,T', each traverse partof yanti-clockwise, across a cut, round
part of C, clockwise (i.e. the opposite sense to C,) and,across

32
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¢ cut as in figure 19. (We are relying on geometnc

e ‘othe
fi s construction. )

intuition for thi

/) is analytic inside and on T', for

The function F(z) = vy

,=1,2and by Cauchy’s Theorem
[ Foydz=0 r=12

Adding these two integrals, the contributions due to the cross-

cuts cancel and we have

va(z)dz—_[C' F(z)dz = 0. (1
Now
f@o) [ fQSCE

c.Z= %0 c. 7%

'[ F(z)dz =
C.

Since limf—(—z)——f(—%—) = f"(z,), for z near zp We must have

z—2zp —Zy

f(2)—f(z0)
z—2,

using theorem 3.3 of Chapter IL. As s—0, the contribution of

this integral tends to zero.
Also

f@=1G) 4

c. 2%

< M.2me

< Mand so

Jf (20) 4 = iz, )J L iet dt = flzg)2mi.

z—2,
Substituting into (1), and letting e—0, we find
f LC) 4z fleg 2,
y z— ZO
which completes the proof.

Note that this remarkable theorem shows that the values of
an analytlc functlon at all points inside a closed Jordan contour
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are uniquely determined by the values of the funct
contour. © TUnction on thy

2. Taylor’s Series

II] tl;ls SeCtiOD WeE use CaUChy,s integral fOImula tO expre
an ana ytIC funCtiOI] as a power series in a n i ou s

} €l hb f

; ¢ g rhOOd Ol 3

LEMMA 2.1. If f is analytic in the o i i
pen disc given
|z—2zo| <R, Fhen f(zo+h) =ay+ah+ ... +a "+ .. ft:)y
|h| < R. If C is a circle centre z,, radius » where 0 <r< R give;
by z(f) = zo+re" (0<t<2n) then a, = 1 f(hz)dz
] 27Ti C(Z_ZO)"+1 ’

Proof. Fix fzwhere || < R and initially restrict » to |h| <r<R
By Cauchy’s integral formula .
1
flath) = o | L2

27i |cz—zo—h

dz.

But 1/(z—z,—h) = : (1— h )-1 : (1—w)™!

Z_ZO Z_ZO Z_ZO
where w = . Si - il
— Since 1 +w+ ... +w"" ! = o Ve have
(I—w)™ ' = 1+w+ ... +w' 1+ al
l—w

Substituting into the integral fo .
fying, we obtain . rmula for f (2o +#) and simpli-

1
fteth) = 5 [ s st i
N
+ n 0
(Z—zo)n(z_zo_h)}dz=ao+a,h+ +a"‘1h"—l+A"
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ere
Wh a ____._1_ __-/;(5)——dz
m 2mi c(z—zo)”'“
d
an P —_}_ f(z)hn "
5 27Ti c(Z_ZO)”(Z_Zo'—'h) ’

For z on the track of C we have | f(z)| < M where M is some
real constant. Moreover for z on the track of C, [z—2o| =7

and lz—zo—h|?||Z~Zol—|h|l = r—|h|, hence

A <——1— ______Mlhl" 2nr = e (Iil ’
|4l <30 ”(r—|h)) (r—=h\r /)"
Since |h| <r, we have A,—0 as n—oo and so0 the infinite series

a,h" converges to the sum f(zo +h)-
Note that we have only proved the expression

lj @ g

= 2mi ) z—2zo)""!

for || <r<R, but since the integral is independent of h, no
matter how small, the expression must be true for any r
satisfying 0 <r<R.

If we write z = zo+h then we have
f(2) = ap+a,(z—z0)+ - - - +a(z—2o)"+ . . - for |z—zo| < R.

But a power series is differentiable as many times as we please
inside its circle of convergence (proposition 6.1, Chapter I) and

_  § ™(zo)

n!
Now suppose that f'is defined on an arbitrary domain D.

If z, is in D then, by definition, so is an s-neighbourhood given
by |z—2o| <& If R is the largest such e (possible infinite), then
using lemma 2.1 inside |z—zo| < R we obtain:

an

an

TAYLOR’S THEOREM. If £ is analytic in a domain D, then
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fis d.ifff:rentiable as many times as we please throughoy;
If z, is in D, then '

f@) = fz0)+f @)z —2)+ . . . +

f “Y(zo)
+T(Z—ZO)"+ |z—z4| < R,
where |z —zo| < R is the largest open disc centre z, contained in
D. .
Substituting z = zo +h, the power series may also be written

as:

f(zo+h) = f(zo)+Sf (Zh+ ... + |h| < R.

SOCo) o,
n!

' REMARK. The importance of this phenomenal result cannot
be over-emphasized. We need only assume a complex function
s differentiable once throughout its domain of definition and
then it is infinitely differentiable. This contrasts strongly with
the real case, where a function may be differentiable once but
not twice (refer back to page 30 for an example).

ExAMPLE 1. f(z) = Log z is analytic in the cut-plane. The
largest open disc centre zo = 1 in the cut-plane is |z—1[< 1.

Since £ ™(z,) = g——l)'%-i = (=1)"(n—1)!, we have:
0

2 _1\n
Log (1+h) =h——%+ +( L

+ ... A<l
n

EXAMPLE 2. f(z) = 1/z is analytic for z#0. If z,#0, then
1 h\"!
1(zo+h) = —| 1+ —

Zy Z,
L B.F (=1 h
Tz, @ B @ ]
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h <1, then |h|<|zol, which states that z,+#A lies in the

—

Zo

If

circle centre Zo, radius |zo|- This is the largest circle centre zg
which does not include the origin (where 1/z is.not defined).
Note that the coefficient of 4" in the power series is
1 1,
CD 7o,

23+1 n!

In the notation of lemma 2.1, ————

|
| n [ __f@

(m — n! e _J@)
il(z_?z\ n:a, Yt 2 (z__zo nt+1 dz, i

where C is a éircle centre z,, lying in the domain of definition
of f. This is Cauchy’s Formula for the n** derivative of f.
If | f(z)| < M on the circle C centre Zo, radius r, then

@,

-_

Wi = Db
lf( )(zo)l - 2 & (z__zo)u+1

n'M

S 2

2xr

and so

Mn!
(m) S =,
| f (ZO)I < r

This result is called Cauchy’s Inequality. Using it we may
prove:

LIOUVILLE’S THEOREM. If f is analytic throughout the
whole plane and |f(z)|<M for all z, then f is a constant

function.
M . ,
Proof. |f'(z0)| < = for any r, since fis analytic throughout
the whole plane. Let r—oco and we have f'(zo) = 0. This is true
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for any z, and so f "(z) = 0 for all z. This impl;
constant. plies that f jg

3. Zeros and the Identity Theorem

If f(zo) = 0, we say that z, is a zero of f. We may write
analytic function f as a power series in a neighbourhood of : §
0

f(2) = ap+as(z—z9)+ - .. +a,(z—zo)"+ ... |z—zy| <R,

Either a, = 0 for all n, in which case f(z) = 0for [z—z,| <R, or
we have @ = @; = ... = G-y = 0 and a,#0. In the la;ter
case we say that z, is a zero of order m. Note that since q, =
£ ®(z,)/n!, a zero of order m satisfies f(zo) = 0, f'(zo) = 0, _",

£ D(ze) = 0, but f™(z0) #0. h

We may show that a zero of order 7 is isolated. By this we
mean that there is an e-neighbourhood of z, in which z, is the
only zero of f, i.e. f(z)#0 for 0< |z—z| <e.

To see this we write

f(Z) = (z—zo)m {am+am+1 (Z—ZO)+ § 1% 4 } for IZ_ZOI<R
= (z—20)"®(2)
where the power series ©(z) = Gp+am+ (z—2zp)+ . . . is con-
vergent for |z—zo| <R. Since ® is analytic for |z—2z,| <R, it is
certainly continuous at z, and so O(z)—a,#0 as z—z,. Hence
@(z) is non-zero in some e-neighbourhood of z,. But (z—z)"
is zero only at z, and so f(z)#0 for 0<|z—z,| <e.

Suppose that 2y, Z3, « « . » Z, - « - is @ sequence of distinctf
zeros of f which tends to a point z,. If fis defined at z,, then by
f:optmuity we must have f(z,) = 0. Since z, is a limit of zeros
it is not isolated, and as we have seen above we must have _}'
identically zero inside some circle centre z,.

Note. This argument depends on the fact that f i i
' _ . is analyt
in a neighbourhood of z,, in particular it breaks down if ,);”11:

+ We consider the zeros to be distinct to avoi ivi
v oid th
a finite number of the zeros coincide at z. ¢ trivial case that all but
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not defined or not analytic at z,. For example the function f

given by f(2) = sin (1/z) (z#0) is analytic everywhere except
at the origin. It has 2 sequence of zeros given by z, = 1 /,,',,
(n=1) which tends to the origin, but e‘wdently thc function is
not jdentically zero inside any circle with the origin as centre.

THEOREM 3.1. Suppose that zy, Z2, - - - 5 Zw - - - is a
sequence of distinct zeros of an analytic function f defined in a
domain D and that the limit of this sequence, Zo, lies in D, then
fis identically zero throughout D.

Proof. By continuity f(zo) = 0 and, as we have seen above,
fis identically zero inside some circle |z—2zo| <2o-

Let w be any other point in D. Since D is a domain, thereisa
stepwise curve in D joining z, to w. We suppose that this curve
has length d and let z(s) be the point distance s along it from
z, so that 2(0) = 2, and z(d) = w. We intend to show that
f(z) = 0 all along the curve, in particular f(w) = 0.

Since f is identically zero in |z—2zo| <eo» then f(z(s)) is
certainly zero for 0<s<&o. We consider those real numbers s in
0<s<d such that f(z) =0 along the curve as far as z(s).
Suppose that s* is the least upper bound of such s. By con-
tinuity f(z(s*)) = 0 and z(s*) is the furthest point along the
curve such that f(z) = 0 for all z on the curve as far as z(s¥)
(marked with a thick line in figure 20).
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We cannot have z(s*) # w. This is because f(z) = ¢ alon
curve up to z(s*) and 50 f(z) = 0 in a neighbourhood |z— zg( tll y
<e. This would imply that f(z) = 0 for a certain distance alfm)|
the curve beyond z(s*), contradicting the definition of s*, Hencge
z(s*) = w and f(w) = 0. This completes the proof.

We may immediately deduce:

THE IDENTITY THEOREM. Suppose that f, g are analytic
functions defined in the same domain D. Let zy, z,, ..., z,, .
be a sequence of distinct points in D with limit z, also in D
such that f(z,) = g(z,) for n>1, then f(z) = g(z) throughout Dt

Proof. Apply theorem 3.1 to ®(z) = f(z)—g(2), then ® is
analytic in D and zy, Z5, . . « , Zy - . - i8 @ sequence of distinct
zeros of ® with limit z, in D.

The Identity Theorem has far reaching consequences in the
theory of analytic functions.

Suppose that f, is a complex function defined on a set S. A
complex function fis said to be an extension of f; if fis defined
on a larger set D containing S and f(z) = f,(2) for all z in S.
In general the values of f at points outside S can be assigned
quite arbitrarily. For example if S is the real axis and f(x) =
sin x for x real, then defining f(z) = sin z for z on the real axis
and f(z) = 0 otherwise, the function f is an extension of f,.
However if we insist that the extension is also analytic, then
(under a minor restriction on S) the Identity Theorem shows
that this extension is unique.

THEOREM 3.2. Let f, be a complex function defined on a
set .S which contains a convergent sequence of distinct points
Zy, Z3, - . . together with its limit. If fis an extension of £, to a
domain D and f'is analytic, then f is unique.

Proof. Suppose that g is another analytic function defined in
D satisfying g(z) = fy(z) for all z in S. Then g(z,) = fy(z,) =
S(z,) for n=z1 and by the Identity Theorem, g(z) =nf(z)
throughout D.
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We remark that the notion of extensi_on to an analytic
function does guarantee that suf:h an extension exists, only t1.1at
if it exists then its uniqueness 1s a.ssured. It alsp does not give
any practical method of constructing an extension and- we w111
find that usually the most successful way is to resort to inspired

guesswork.

EXAMPLE. fo(2) = 14z4+2%2+ ... +2+ ...  |zI<L
The set S of complex numbers satisfying |z| <1 certainly

. 11 1
contains a convergent sequence of points (e.g. >3 gl

. . . with limit 0) and so an extension to an analytic function

in any given domain D is unique. The power series for f; is
not convergent for |z|>1 but the function f(z) = (1 —z)7tis
analytic for z# 1 and satisfies f(z) = fo(2) for |z] <1. Hence the
analytic function fis the extension of f, to the domain consis-
ting of all complex numbers except z = 1. Note however that
no analytic function exists which is an extension to the whole
plane, because f(z) has no finite limit as z—>1 and so we cannot
define (1) in any way to make f analytic there.

The notion of extension by an analytic function is particularly
interesting in two cases:

CASE I. S is the real axis (or more generally any subset of
the real axis containing a convergent sequence of distinct points
together with its limit). Given a real-valued function f;, defined
on S, if there is an extension to a complex analytic function fin
some domain containing S then this function is unique. This
shows the strong restriction imposed on a complex function
by requiring it to be analytic.

For example if f5(x) = sin x for all real x, then of course we
know that f(z) = sin z gives an analytic function defined
throughout the whole plane and f coincides with f; on the real
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axis. We now know that f(z) = sin z is the only apgpye
function which satisfies f(x) = sin x for x real. Dalytic

cASE II. Sis a non-empty open set.

Since S is non-empty it contains a point z, and since it ;
open it includes an e-neighbourhood of z,. We can easily selels
a sequence of distinct points in this neighbourhood which tengz

1 1
t .g. = =85 % &
0 Zp (eg zo+28, Zo+33, , 20+n+18’ ...)and so§

satisfies the required conditions. As a particular instance we
may take S to be the open disc |z—z,| <e.

We have seen in section 2 that if f is an analytic function
defined in a domain D and z, is in D, then f has a Taylor series
expansion in a small disc centre z,. The notion of extension
using an analytic function shows that the reverse process is
true in that once we know the values in a small disc in D then
the values of f throughout D are uniquely determined. Hence
in some peculiar way the power series expansion in a small
disc contains all the information required to specify the values
of the function throughout its domain of definition!
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EXERCISES ON CHAPTER THREE
ansion of the following analytic functions at the

origin:

1.
7.

Z(1-2)22 23¢* 3.(z+1)? 4. Log(1 +2) 5.(1+2)* 6.(1+2)™.

Suppose that f is analytic throughout the whole plane and
satisfies | (@) <Mzl for all z. Use Cauchy’s inequality to prove
that f* (2) = 0 and show that f(2) is polynomial of degree at
most n.

Find the extension of the power series in 8-10 to analytic functions in
the largest possible domain.

8.

10.

11.

12.

inz" |zl <1

n=1

T (-1 Izl <1,

n=0

9. Y n?z" |zl <1 (Hint: differentiate Y nz")
n=1

N ©
If a,(z) = 2" +(1—2)", by considering ) a(2), prove that g,,(z)

n=0 n

converges if |z| <1 and |1—2] <1. Draw the domain given by
|z| <1and |1 —z| <1. Find the sum f(z) = Y’ a,(2) in this domain
=\

n
and hence write down the extension of 'f(z) to an analytic function
in the largest possible domain.

Suppose that f is analytic in a domain D containing the point

1 . 1\
=1andf(l——) = E (-1)*(1—_) forn=1,2... .
n n
0

Calculate the following "(1-f they exist):
£(0), f(1+1), £G), £(2,000).
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Appendix I

THEOREM. If f(2) = co+cz+62%+ ...+t || for
|z| < R, then f'(z) = ¢;+2¢,2+ ... +nc,z" '+ ... for lz|<R
Proof. First we show that the power series '

fi(®) = ey +2¢,z+ ... Fne 4 L.

is absolutely convergent for [z| <R.
Fix z and choose r such that |z|<r<R.

By hypothesis ) ¢, converges absolutely and so there is some
n=0

positive number K such that |c¢,r"| < K for all n.
K|z|P—1 Kng™-1

Letg = E, then 0<g<1 and |nc,z" ™| < n lf.:' _ o

g r

But ) ng"~* converges (to (1 —¢)~?), hence by the comparison

n=0

test, ¥ nc,z"~* converges absolutely.
n=0

Now we show f7(z,) = f1(z,) for |zo| <R, i.e.

i {f(Z) ~f(z0)

z—‘Zo

-/ 1(20)} = 0.

zZ—2Zy

As before, choose 7 such that |zy| <r< R and since z—>z,, we
may also restrict z so that |z| <r.

We know } nec,"~* converges absolutely. Suppose we are
n=0

. @K
given e>0, then we can find an integer N such that }’ Inc,r" 1|
n=N

< %e. Now keep N fixed. We can write
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f,'(i)f:[—(iqz"fx(z) =
z%o = »—1 n—1
Z Cp {z""l+zoz"'2+ eee +2Zg —nNnZy }

n=0

he sum of the first N terms of this series (i.e. from

bet : %
We lgttzo::n _ N—1)and Zz the sum of the remaining terms.
n =

Then ; ) )
lz2| < Zlcnl {rp-l+r;—1+ oo+ +nr” }
n=N

- i 2n|c, )t <Ze.
n=N

< = n—1 n—1y 3
Also 31 = 2 G A4z, 24 ... 42z —nzg' YIS 2
omial { im ) there is a >0 such
polynomial in z and lim }; = 0. Hence there 1s

that |Y;| <4e provided ‘that |z—z,| <8. Thus for |z]<r and
|z—2zo| <8 we have

Igtf(fo_)—ﬁ(zo) <|Tal+ el <tetie ==
0

This means f"(z,) = f1(Zo) as required.
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CAUCHY’S THEOREM FOR A TRIANGLE

Suppose f is analytic in a domain D and T is a triangular
contour whose track and interior lie in D, then [; f(z) dz = 0

Proof. Suppose |[r f(z) dz| = h>0, then by a neat trick wé
show & = 0.

Draw in lines joining the midpoints of the sides of T and
parametrize them, giving four triangular contours 7!, 7
T®, 7@, such that integrals along the additional lines cancei
in pairs because they are taken in opposite directions.

I = [rmf(z)dz,n=1,2,3,4,
then

Il+12+13+[4 = J-Tf(Z) dz.

Figure 21
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gince | Ey ) dz| = h, we can choose r such that || > }h.
Define Ty = T®, then
U 1@) dz|2ih

Ty
and since Ty is half the linear size of T, the perimeter length of

e
T, is given by L(T,) = 3L(D).

Repeat the process of subdivision with T and so on, obtaining

a sequence of triangles Ty, Tay « - = s Tpp o v+ - where

[, 7@ dz| > @k a
and

L(T,) = B)"L(T) 2

This sequence of triangles approaches some point z, which
lies inside or on the triangle 7. By hypothesis, f is analytic at

z, and so
. z)—f(z .
- {f( )~ o)} - e
zZ—Z) Z—2Zy
This means that given any >0, we can find >0 such that
if |z—z,| <8, then
f@)—fz) _
QS iz,

Z—2Zy

<e. 3

The condition |z—2z,| <8 means z lies in a disc centre Zo,
radius 8. Since the sequence of triangles Ty, Tp, <« <5 T+ - -+
approaches z, and each 7, is half the linear dimensions of its
predecessor T,,_, for some N we have T, lying inside this disc
for n> N. Thus for all z on the triangle T, n>= N, from (3) we
have

| /(@) —1(20) —f"(20) (z—20)| < &|z—2o| < eL(To)- @

By the Fundamental Theorem of Contour Integration, since

d

T, is a closed contour,j dz =J —((2)dz=0 andj z dz
Th Tn dz Tn
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_ I _d_(lzZ) dz = 0. Since z, is fixed, we see that
T, dz\2

[, @& = [, F~fG)=T"Go) —20) dz.

From (4), we have

[ ,./@ de| < eL(T).L(T,)

= «FLTY from (2)
Comparing this with (1), we find

@k < (3 L(T)*
ie. h < eL(T).

But #>0 and e may be arbitrarily small. This implies that
h=0.
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Solutions to Exercises

Chapter One

1.

() x2—y*+2x+i@xy+2y) Q) x(x2+y)1-iy(x2+y)1
(iii) sin x cosh y+icos x sinh y
(iv) (xe* cos y—x+ye* sin y) (e*—2e* cos y+ 1)1

+i(ye* cos y—y—xe* sin y) (e2*—2e* cos y+1)-1
) % log (x2+y2)+itan-1 (y/x) where we choose 0<tan-! (y/x)
< for y=0 and — = <tan~! (y/x) <0 for y<0.
(vi) x2+y2+i.0 (vi) tan-1 (y/x) with the conventions of 1.(v)
above.

() 2z+2 (i) —z-2 (i) cosz (iv) (eF—1—z&°) (e5—1)2
W) zL.

ou ou ov v
_a__=2x,_=2,.__.= =ae=
() ox oy P 2% 2 "
d 2102 5
Atz=0,2 0zt = tim 2% — i Z = 0,
dz z—>0 z—0 2
u_ -y ow_ x  w_
ox  x2+y2 oy x2+y2 ax oy
(i) domain (ii) no (not open) (iii) no (not connected) (iv) yes

(v) yes.

5. f= u+iv where v = 0. %’ = Z—; = 0. By the Cauchy-Riemann
. Ou_Ou x
equations = = 2 = 0. Thus f* = 0 throughout the domain of

definition which implies that f'is constant.

@) M = ik A = —ik (i) Ae*+Be?* (iii) Ae*+Be2 s+ Ce2iz,

+(n+1) (n+2) (n+3) ,
z

4.5
(1—z)‘4=1+4z+r222+.... =

+ ..
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SOLUTIONS TO EXERCISES

Chapter Two

(In questions marked * the integration may be performed using the
Fundamental Theorem of Contour Integration).

L _%+;; 2. —13% ¢'—e 4" Logi-Log1 = i7 5+, L

-]

6. gf T*. 1i—lisinhz—£+1 sin 2
3 2 4 2 4
sa+l at+l i(n/2)(a+1) _
# ¥ 1_1 : =€——11(smoel“’+1
a+ at+ a+t el@t)Logi — e!(xl2)(a+1))
10. O 11. 2mi.
12. () converges absolutely by comparison with ) |c,z"|
smoe\——zn—l/l W2 = |~—l—>0asn—>co.
n
ann+l

@) [, ) dz = F(zo)—F ) Z

Chapter Three
n+3

1. z+2224 ... +nz"+...|z| <1 2. 234244 ... +
all z.

+ ...for

3. 143z+322+23forallz 4. 1—-z+... +(—1)"f:+ Lozl <,
n

aa—1)...(e—n+1)z"
+
nh!
a positive integer in which case the series terminates and is valid
for all z).

5. 14az+ ...+ . |z] < 1 (unless « is

6. 1—224 ... +(=1D"z?"+ ... |z| <.
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10.
11.

12.

SOLUTIONS TO EXERCISES

If |z—zol = r and r>|zol, then |z|<|zo|+|z—20| <2r and so
2 n
/()| <2°r"M. Hence |f** (z o)lsr—M’fff—l) Let r—co,
then f(**1 (z0) = 0
z z(1+2)
. z# 1) L e #1
(1-2)? ¢ a—zp D
(A+z2)1  (#£D).
z 1
= —F— 0,1).
f(2) 1-—z+z (z#0, 1)
f@@) = Z( 1)"z2" = (1+22)-1 wherever f is defined. Hence

J0) = L f(1+z) = (1—2i)/5, f(2,000) = 1/4,000,001 (if they
are defined) but f(i) cannot exist if f'is analytic.
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graph 15
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Identity Theorem 60
initial point 32
inspired guesswork 61
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Jordan Curve Theorem 35

length of contour 43

limit 15-17

line segment 33

Liouville’s Theorem 57
logarithm 13-14, 19, 28, 56

MacLaurin 29
neighbourhood 10

open 11
opposite path 34, 38, 39

parameter 34

path 32

primitive 41-43, 47

pogver series 26-30, 54-58, 64—
S

radius of convergence 26-27
region
regular function 22

smooth path 34
star-centre 46
star-domain 46
stepwise curve 11, 26

Taylor’s series 29, 54-58, 62
Taylor’s Theorem 55-56
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unit circle 33
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zero 8, 58
zero of order m 58
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