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CHAPTER ONE

Conformal Mappings and Harmonic Functions

1. Conformal Mappings

In this section we discuss the geometrical properties of
analytic functions. First we calculate the gradient of a smooth
path in the complex plane.

If zo#2z,, then 0 = arg(z; —z,) (—w<0<=) is the angle
between the real axis and the directed line from zy to z,.
Suppose that z(f) = x()+iy(f) («<t<p) is a smooth patht
and z, = z(to), z; = z(f) are two distinct points on its track,
then 6 = arg(z(f)—z(z,)) is the angle between the real axis
and the directed chord from z(z,) to z(z).

Figure 1
Now if ¢ is a positive real number, then arg ¢z = arg z. If we

assume that 7> ¢, then

>0 and so

0

0 = arg(z(r)—z(t,)) = arg{M} .

0
Tie. 2'()) = x’())+iy’(¢) exists and is continuous for a<t<8,

9



5 HARMONIC FUNCTIONS

o tangent at fo directed ip

s {,(I,)”ﬁ(_{")%z'(fo)- From this we
increasing. AlSO Tyt

the angle between the real axis and the directeq

may infer 8800 " rovided that 2'(f0) #0- 0

tangent is arg Z 1o 0 is omitted because arg O 1s not well.
The case 2'(fo) f—iu other cases is not trivial because arg ,

deﬁn:’:s' El: II))rr;lct):Lval yalue —m<arg Z<m, and arg is not
deno

2(t) —z(t,)
b

¢inuous on the megative real axis. Let w =
con

wo = 2'(to)- Since arg is continupus liin the cu:plane’r, V;}flen
—mp<arg wo<m We have w—Wwy 1mplies a.rg M.) arg .wo. us
0~—Zarg z'(t,). However if arg wo = m, i.e. if Wo 1: on the
negative real axis, then although arg wo = 7, ﬁ‘ poin c;mu' Wy
but below the real axis has arg w nearly —=. If w ten s to W,
from below the real axis then arg wo—>—m. Worse still, 11? W
tends to w, in a spiral path, going round and round and getting
ever closer to w, then arg w jumps from nearly —m to ™ a1.1d
back again ad infinitum so that arg w does not‘ tenq to a limit.
Thus it is blatantly untrue to say that w—>wq implies arg w—
arg w, in the case of the principal value. If arg wy = m, We
choose the value of arg w in the range 0 <arg w<2m. This value
is continuous near w, and as w—>w,, we have arg w—m, a
required. ‘
Now suppose f is an analytic function defined on a dom'am
D. Let y be a smooth path in D given by z(f) = x(t?+ty(t)
(x<1<f), then f transforms y into a smooth path T' given by
w(t) = f(z(1)) (< t<PB). Suppose that z, is a point in D where
f'(z0)#0 and z, lies on the track of v, i.e. zo = z(f0) for
some t,,. 70
We compare the directions of the tangent to y at Zo a0

t Functions of a Complex Variable I, p. 18.
10

CONFORMAL MAPPINGS

tangent to I' at wy = f(z). Let ¢ = arg z'(t,), ¢ = arg w'(t,).
Since

w'(to) = f'(2(ty))z'(t,)

we have arg w'(t,) = arg f'(z(t,)) +arg z'(¢,) up to a multiple
of 2r and so ¢ = arg f'(zp)+¢ up to a multiple of 2.

A % f =

wof(z,)

0, - d

Figure 2

Hence the tangent to y at z, is turned through an angle
arg f'(zo) upon transformation under f. This does not depend
on the path y and so if y,, v, are two paths through z,, then
the transformed paths meet at the same anglet as y,, y,. (In
each case the tangent is turned through the same angle
arg f'(zo), up to a multiple of 2z, upon transformation.)

A transformation preserving angles between curves is said
to be conformal. An analytic function is conformal where
f'(2)#0. (It is certainly not conformal where f(z) = 0. If z,
is a zero of order m of f’, then the angle between curves

through z, is multiplied by m+1 upon transformation. The
proof is omitted.)

We can find more information about analytic functions by
considering the equation

i f@ =S (z0) _ F(zo).
220 Z—2Zy

T The angle between two paths through zg is the angle between their
tangents (considered up to a multiple of 2m).

11
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D

z—~%0

= | f'(z0)|

lim
%0

pear Zo, W Ve

“ﬁz_);_f,(fo)\ﬂ | (o)l

\ z—2Zo

and so for 2

e | f0)—f@) = | [ @Ol |2=2ol.
hat f magnifies lengths by approximately | £'(;)
This says tha
near Zo- 2., z, ‘close together’, where f '(Zo)#t)l, then
Teking Zo» “1 ification property state that the
: the magni \ :
conforqalﬂ:ﬁth vertices Zo, 2y, 72 i transformed into
ana.n ma{lgl gle, with sidelengths multiplied approximately
gmxla'r- t)r|12:§1d t’umcd through an angle arg f”(z,). The smaller
?ﬁ’t]{ﬁ(;; gle, the better the approximation.

Zy

4’

foflz)| g z)

(
zZ o~ AN argf(z,|
Z Y1f(z.o)

Figure 3

As an example of a conformal mappingf, we consider

f@@) = Z:Z (ad#bc) which is defined for all z if ¢ = 0 and

1 ‘Mapping’ is just another word for ‘function’,

12

CONFORMAL MAPPINGS

for all z except z = —d/c otherwise. This is called a bilinear
, ad—bc .
mapping. Note that f'(z) = hr i and so the condition

ad#be ensures that f'(z)#0 wherever f is defined and so f is
conformal.

As particular cases we note:

EXAMPLE 1. A translation w = z4«. Poj
correspond to those in the z-
Figures remain the same sha

nts in the w-plane
plane with a change in origin.

pe and size when transformed.

EXAMPLE 2. A rotation w = ¢
arg w = arg z+¢ (up to a multiple of 27) and |[w| = |z|, we
see that figures are rotated thro

ugh an angle ¢ about the
origin but lengths remain unchanged.

"z where ¢ is real. Since

EXAMPLE 3. A magnification w =
positive. A figure remains similar and
transformed, but lengths are multiplie

rz where r is real and
similarly situated when
d by a factor r.

EXAMPLE 4. An inversion w — 1/z. If z=re® then

W= ;e'“’ and so |w| = 1/|z|, arg w = —arg z. Unlike the
previous examples, this may change the shape of figures. For
example a circle may be transformed either into a circle or
into a straight line. However, by considering a line to be a
‘circle of infinite radius’f, it may be shown that an inversion
transforms ‘circles’ into ‘circles’. Other curves may have their
shape altered, but because of the conformal property, the
angle between two paths remains unaltered (provided that
their intersection is not the origin, where the transformation
is not defined),

1 See Exercise 4 at the end of this chapter.
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AN

GS
pPIN : for t
MA o draw pictures he aboyg

aged t

hem. " ,
Jes to D¢ t that 2 eneral ‘_)lhnear mapglng 0
e o remarkeble f::ssion of the particular types descripey
be express 0. we write
above. For €75 p be—ad @

aztb _ __————= 1.

az+d Az +dfe) ¢

cON
reader 18 eqcouf

be—ad _ ) thenA#0. We write wy = z+(d/¢), w; = 1w,

Let —2 ;
vy W=t By successy,

wy = [MW2s we4ﬁn d that w is obtained from z by a translatio,

substltutl;);lv orsion, a magnification, 2 rotation and anothe,

then an ’

translation.

i az+p
=01 ewhat easier. We have w = =0
The case ¢ = 0 1§ som >

— az+p where a= a/d, B=bld Th}ls 1f‘ Wy = oz,
w, = (eflawy, w = W2t B, we see that w is 9bta1ned from ;
by a magnification, a rotation and a translation. .

Of the particular examples con51dered', only a:n. inversion
changes the shape of a figure and even .thIS takes ‘circles’ into
‘circles’. Thus a general bilinear mapping transforms ‘circley
into ‘circles’. . -

Bilinear mappings have many other interesting properties,
The reader should consult the literature on the subject.t

2. Orthogonal Curves

As we have seen in the last section, the angle between two
smooth paths is preserved under transformation by an analytic
function where that function has non-zero derivative. The
most important case occurs when the paths are orthogonal

T L. V. Ahlfors, Complex Analysis, McGraw Hill Book Co., pp. 76-88.
14

ORTHOGONAL CURVES

(i.e. intersect at right angles). If y; is a line parallel to the
x-axis and y; is paralle] to the y-axis, then they are orthogonal
and so the transformed curves I'j, ', meet at right angles:

I P N
— Dk

—

Figure 4

As an example of this phenomenon, consider the function
f(z) = & = "7 Taking polar coordinates in the w-plane,
w = Re', then w = f(z) gives R=¢* and ¢ = y (up to a
multiple of 27). Thus the line x = constant transforms into
R = constant, which is a circle centre the origin, and
y = constant transforms into ¢ = constant, which is a straight
line through the origin. These evidently meet at right angles.

A most useful technique is to write /(z) = u(x, »+iv(x, y)
and consider the curves u(x,y) = u, = constant and
v(x, y) = v, = constant. Suppose that these are smooth paths

y v
* U=Uq A ‘
— V=Vo
v(x,y)=vo I
j \ —> X N
U(XIY)=UO
Figure 5
15
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CAUCHY’S RESIDUE THEOREM
1

z2—-1

EXAMPLE 2(4). f(z) = (z#1).

Put z = 144, then

1
O i+

1
=—1—h+k2—__ —1\nzn
AR -+ %)h+...}for0<lhl<z

B R AL TR G VL I
Thus f has a simple pole at z = 1.

It is possible to show

) that a point ;
without actually caleulat; point is a pole of order p,

ng the Laurent series. If
@) = by(z—zp) ™4 - +by(z—2z,)"1
+ ;)a..(z—Zo)"

then (z—z,)m f(@)—b, #0 as Z—>7,
tends to a non-zero limit, then a;) .
has a removapble singularity at, 2
order m. (It may also be seen th(;
2o)"f(z) does not tend to

0<|Z——20]<R

Conversely, if (Z=zo)"f(2)
we have seen, (z=zy™F (2)
and 5o f(z) has a pole of
t (z—zo)"f(z)—>0 for n>m
a finite limit for » <m.)

2z+4 .
(—2%) sins has a triple pole at the

origin because 23 fz) = 22+4( z

3
1—-2z2%\sin z) as z-{.

EXAMPLE 2(p), f(2) =

CASE 3
The principal i infini i
part is an infinite series, i.e. an jnfin;
.€. an in
of the b, are non-zero. Such ] 4 e nutmber

by a a singularity is called an ;
essential singularity. The behaviour of fnear Zy i8 very peicgﬁ;ed
i

30

ISOLATED SINGULARITIES

we cannot have |f(z)|—+ co because this would

Aspf;;;’t fhas a pole at zo. (This follows because | f(z)|->+ oo
m
1

. 1. ——0, so - has a removable singularity at z, and
implies 707y f ° 1

. . . 1
may be considered analytic there. Since zlil?., I = }

pas a zero of order m for some m>1, and f must have a pole
of order m.) o

If f(z) does not approach infinity, what happens? In fact
the behaviour of f'is very wild near z, in the sense that in any
neighbourhood of z, (however small) f takes every complex
value with perhaps one exception. This is Picard’s Theorem;
the proof is omitted.

1

1 1
EXAMPLE 3. exp(1/z) = 1+;+2—!25+ +n!z,,+ ...|z|>0.

In 0<|z| <e (no matter how small &), exp(1/z) takes on every
complex value except w = 0. To see this, we require to find

z such that w = exp(l/z), 0<|z|<e. This is equivalent to
solving the equations:

- ] 2nk)  (b) 1 >—l
(@) —= Log|w| +i(arg w+ 2mk) P
For w+0 and any integer k we can find z from (a), and by
choosing k very large, we can make

1 s 1
P (Log |w)*+ (arg w+2mk)*> .

Note. If z,, z,, . - . is a sequence of distinct isolated singu-
larities of f which tends to a limi? z,, then z, cannot be an
isolated singularity of f. This is because every annulus
0<|z—2zp|<e contains points of the sequence and at these

points f is not analytic. In such a case, z, is called an essential

singularity of f.
31
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CAUCHY'S RESIDUE THEOREM

=

: 1
EXAMPLE 2. f(2) = z° hasatriple pole at co since f <~>

z
EXAMPLE 3. f(z) = €° has an isolated essential gy

Bularigy
1 1
at o sincef(;) = exp )

21, 2, - - - 18 @ sequence of isolated singularities of fang
lim z, = oo, then f cannot have an isolated Singularity a¢ -
n—o .

since every domain |z|>R contains

points of the S€quencg
where f'is not analytic. In this case fis said to haye an essentiy)

EXAMPLE 4. f(2) =
since (n+1)x is a sin

tan z has an essential sin
gularity of f for every inte

gularity at 0
ger n.

4. Cauchy’s Residue Theorem

If z, is an isolated

singularity of /, then by Laurent’s
Theorem we have

1) = 3 afe=200+ 3, bz

0<|z—zy|<R.
Also the coefficient b, is given by

1
b = e — n—1
n 2"”'_‘; (Z ZO) f(z)dz
where C ig the

circle centre z,, radius Iy Z(t) = zy4re't
0<1<27). In particular, the case n = 1 holds a special place
because

by = ZLWL f(2)dz.

The coefficient b, is called the residue of fat z,,
(Note that the importance of b, is to be expected, for term

34

CAUCHY’S RESIDUE THEOREM

py term integration gives

[ s - [ Bate=rors F b=zl
c
=Y a,,j (z—2o)'dz+). b,,j (z—2p)™"dz
C

C
= b1.27Ti.

\ d (Z— Z, n+1
The last line follows because (z—zp)' = <{——

dz| n+l1
#—1, giving [c(z—20)'dz =0 (n#-1), whereas
rF nz )'1d’z = 2ai by direct calculation.) . .
'[C(Z_ (:)se y is a closed Jordan contqur (descnp?d anti-
closglk?ise) whose track lies in the domain of definition of f

and suppose f is analytic everywhere inside y except at the
isolated singularity z,.

()

4

Figure 9

By choosing a small circle around z,, making cuts from y
to C in the usual fashion, we see that

1 LY PR
by = .Z:JC f2)dz = 21ri£.f (2)

i te
Hence if we know the residue b, of f at z,, we can calcula
e
[, f(2)dz by the formula

J. f(z)dz = 2‘rrib1 (2)
Y
35
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CAUCHY’S RESIDUE THEOREM

1 : -
EXAMPLE. f(2) = . has residue 1 at the origin. Hence it

is any closed Jordan contour described anti-clockwise ro

the origin, g
1
j —dz = 2mi
"
This generalizes the case where y is the unit circle whj
C
be calculated directly. n nay

This method of calculating integrals by residues

. ; is a
c?{tremely useful technique. It generalizes to the case of SeVerzﬁ
singularities inside y.

CAUCHY’S RESIDUE THEOREM. Let y be a closed Jorda
contogr c_lescribed anti-clockwise. Suppose the function fin
gnalync In a domain which includes the track and thz
interior of ¥ except for a finite number of isolated singularities
Zi> -« ., Z, In the interior. Then if the residues at Ziy e, 2
are py, - . ., p, respectively we have T

| @z = 2mi(py+ . . . +p),

doProgf. Make cross-cuts dividing the interior of y into n
mains, each of which contains precisely one

singularity.

Figure 10
36

NUMBER OF ZEROS AND POLES

r, is the poundary contour (described anti-clockwise) of
gle rregion containing z,, by (2) we have

J'r, f(2)dz = 2mip,.

Adding these integrals, the contributions due to the cross-cuts
cancel in pairs and we find

J’ @z = 2mi(py+ . o).

Note. This is yet another proof which relies on geometric
intuition because we have not specified precisely how to make
the cuts. Nevertheless, in any particular case that we meet
in this text, this would be obvious.

In Chapter Three we will use Cauchy’s Residue Theorem to
calculate specific integrals and will give several examples

there. We now use the theorem to obtain some more general
results.

5. Number of Zeros and Poles

Cauchy’s Residue Theorem may be used to find the number
of zeros and poles of an analytic function inside a closed

Jordan contour. For this purpose a zero of order m is counted
m times and a pole of order n is counted » times.

THEOREM 5.1. Let y be a closed Jordan contour descrilzed
anti-clockwise. Suppose that f is analytic in a domain whxf:h
includes the track and interior of y except possibly for a finite
number of poles inside y. If f is non-zero on the track of 7,

then )
1 '@, N
E%Ivmk—N P

where N is the number of zeros and P is the number of poles
inside y.

37




CAUCHY’S RESIDUE THEOREM

Proof. First note that the integral is well-defineq Decayg,

’

Jfis non-zero on the track of y and sof}; is analytic there, In fagq

7 only has poles where f has a zero or f' (and hence ) hag
a pole.

If z, is a zero of order m, we have f(z) = (z—z
where g is analytic and non-

zero in a neighbourh do)"'g(z)
urhood of
Thus oz,

i) = m(z—zo)""‘g(Z)+(z—zo)’"g’(2)
f'(@) m g
" i =
) =2 @)

’

But ZL is analytic in the neighbourhood of Zp and so r

7 has
a simple pole of residue

m at z,.
Similarly if

f has a pole of ord

: €r n at z,, then f@) =
ytic and non-zero in a neighboyr-
hood of z;. Thus s

f(2) = —n(z—zl)""lh(z)+(z—zl)"'h’(z)
and '@ = 14_@
@) z—z ()
. k' _ '
Again PR analytic in a neighbourhood of Zy and “- has
a simple pole of residue —p at 24

By adding all the residues
together, we obtain the required re

sult.
As a corollary of this theorem, we see that if fis actually
analytic inside v, then the number of zeros of [ inside y is
1 {12
2m'S, fiz) %

ROUCHE’S THEOREM. Suppose that f and g are both
38

o

NUMBER OF ZEROS AND POLES

.. in a domain containing the track and interior
analytl‘;o;ed Jordan contour y (described anti-clockwise). If
a C

<|f(2)| on the track of y then f and f+ g have the same
‘ggr)x\ber of zeros inside y.
n

Proof. Suppose that f has m zeros and f+g has n zeros
roof-

f(2)+g(2)
. ="————, we see that F has n zeros
inSide Y. Then if Fi (Z) f(Z)

d m poles inside y. Also | f(2)|>[g(z)[>0 on the track of y
a;ﬁowing that F is analytic there.

We will show
1({ F'(2)
-m=_—\| ——dz=
nom %J, F()
This is done by transforming the integral.

‘Write w = F(z), then as z describes the contour y i].Zl.thc
z-plane, w describes a contour T' in the w-plane. Explicitly,

if y is given by z(f) = x(f) +iy(t) («<t<p), then I'is given by
w(t) = F(z(f)) («<t<P).

0.

H
AT L Co
&7(?)  Ja Fl()
?w'(t)

But for w on the track of T, the real part satisfies
f(2)+5(2)
Rw = RF(2)) = 91(——————

f(z)
g2\, ,_|g®@ ;
= 1+‘R(7(z_)>>1 f@ i

by hypothesis.
39
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CAUCHY’S RESIDUE THEOREM

A

S

Figure 11

This means that the track of T lies in the half
and so must lie in the cut w-

Plane Ry
Plane (cut along the
axis).

negative reg)
1 d

In the cut-plane we have = I (Log w), and by the Funda.

mental Theorem of Contour Integration round a closed

contour, ” dw = 0. This completes the proof,
r

As a consequence of Rouché’s Theorem, we can deduce the
Fundamental Theorem of Algebra. This states that a polynomial

Z+a" 4 L 4, =0
has 7 roots (counted according to multiplicity).
Take f(z) = 2~

» 8(z) =az" 14 | . +a, Let C be the
circle centre the origin, radius R>1. On C we have | f (z)] =R
and

lg@)\ < g, |R-1 4 | +a" < (lay|+ . .. +la,)R*-1,
Hence choosing R>|ay|+ ... +la,|, we have lg(z)| <| )|
on C.

But fhas precisely one zero of order n (at the origin) inside

40

EXERCISES

f+g has n zeros inside C. Thus the polynomial

e anq Sohas n solutions. )

equation hat we have only shown that the polynor.mal _ha§ n
Notice t ve also given their approximate location, inside

761085 we (1; aIn particular cases we can use Rouché’s Theorem

the °-1,r:1§urtiuer information of this kind,

to gt

MPLE. z°—622+10 = 0 has all nine zeros between the
EXAMPLE.
= 1and |z| = 2.
s circle |z| s &

o hen 16| = [~ 6% K e+ 6 = 7<I1),
Isf-nl:lf(—;) t;as no zeros inside |z| = 1, f(2)+g(2) = z°—622+10

1

os there.
alsgi;?lsaﬁz Z:; |zl = 2, f(2) = 2°, g(z) = 10—62%, we have
|g(2)| <10+6|z[> = 10+24<2° = |£(2)|

and since f(z) has a zero of order 9 at the origin, f(z)+g(z2) =
z°—62z%+10 has 9 zeros inside |z| = 2.

EXERCISES ON CHAPTER TWO

. e . . ulate the
For each of the isolated singularities in exercises zll;g,ywl:lin e e
Laurent expansion and state what type of singul

1.z %P atz=0 2. (2—a?)1atz = a(a>0)

z+22
atz=0
3. z-1cos(z-)atz=0 4. Log ( - )

z—
= = 1.
= —1(z-2)}tatz .
-5 +z22-2)atz=0 6. _{(z . -
(fl.aszsify(ztt(:: ssiilgularities of the functions given by the form
exercises 7-11 (a) at the origin, (b) at .

= - 9. z3sin(z-1)  10. tan(z 1)
" zsinzz  1—cosz
11, z 7%,

. S
Rouché’s Theorem to show that if |o| >e, then oz
e Ro The ta
. g:s n solutions inside |z| = 1.
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CHAPTER THREE
The Calculus of Residues

1. Residues

In this chapter we intend to use Cauchy’s Residue Theorep,
to calculate specific integrals. In order

able to calculate the residue at an is
most direct method is to calculate pa

to do this we must be
olated singu]arity. The
rt of the Laurent series

of f at the singularity z, to find the coefficient of :

==—. Tn
zZ— ZO
simple cases this calculation may be avoided.

METHOD 1.
For a simple pole, the residue of S at zg is lim (z—zp)f(2).
2-—>20

This is because fz) = i

+Za,,(z—zo)" and so b, is the
2=2y n=o0

given limiting valye,

EXAMPLE L. Iff(z) =

then the residue of fatzerois

1—cos 2’
. 4(32)*
1 = —
zl_r?o *1—cos z ,l_,o 2 sin*(3z)

Sometimes we have f(2) = 2(2)

h
P and f has a pole at Z,

because ¢(z) is zero there.

42

RESIDUES
|
| 2.
gTHOD | |
| ' If f(2) = I—’—((E‘)) where p(zo) #0 and z; is a simple zero of g,
| Z
| : P(2o)

: ¥ g=—=,
' then the residue of f at z, q'(2o)

This is because 4(Zo) = 0 and q'(z,) #0, hence
/ {q(Z)—q(zo)} _ plzo)

2=z | q'(z)’

lim (z—20)f(2) = lim p(z)

zZ—>2Z)
z—>2Z0

XAMPLE 2. If f(z) = then the residue of fat z, = 1
E .

1-2z*
1 1
ST 4

Methods 1, 2 may be generalized for poles 9f higher order,
but the calculations sometimes become complicated and tl.len
the best method is direct calculation from the Laurent series.
However, generalizing Method 1 for a pole of order m, we
have:

METHOD 3.

If z, is a pole of order m of the function £, then the residue
ffatz,is
ot 1 a!

(z—20)"f(2)}-

lim . m—1
2z (M—1) dz

This is because . ”
s - —1+ an(z—20)3
f(z) = bu(z—2z9) "+ . .. +by(z—20) 'Z:,o

and so - b
—zo)" '+ ) a(z—z))" "
(z2—2o)"f(2) = bu+ - - +h1(z=20) ,.go
This gives

43




v—f ’

THE CALCULUS OF RESIDUES

g:—i {z—z9)"12)} = (M=) b +m! ag(z—zy)+ . ..

and the result follows.

z4+1\? )
EXAMPLE 3. If f(z) = (——l) then the residue gt the

double pole z, = 1is

. 1d 2+ 1\ T
3—,11?1—' d—z{(z—l) (;Tl) } = lim (2Z+2) = 4,

z—1

In cases where methods 1-3 are
calculations become difficult, we mus
part of the Laurent series, (We only
Z—2¢)7%, so the reader who calcul
wasting a great deal of energy!)

The calculation can often be

Taylor series. We recall that we

not applicable, o the
t determine the relevant
require the coefficient of
ates the whole serjes is

performed by manipulating
can add or multiply power

@© el
series Zoa,,(z—zo)", Y b (z—2z) term by term in any disc
n= n=0

|z—2o| <R where both series converge. In particular the

product is ) ¢,(z—z,)" where Cn = Qob,+ayb,_,+ ... +a,b,.
n=0

To calculate 1/1(z) where f(2) =

Y a,(z—zy)" for |z—zo| <R
=0
and a,#0, we remark first that 1

/ ﬁz) certainly has a unique

power series expansion Y. b (z—2,)" in a small disc ce
n=0

(Because f(z,) = 70 and by continuity f(z) £0 in |z—z,| <&

for some e>0. Hence the inverse 1/f(z) is analytic (with

derivative —f @/(f(2))* in |z—zo| <& and so has a unique

Taylor series.t) Since %, axz—zoy “Zob,,(z—zo)"

ntre z,.

= 1, multi-
T Functions of a Complex Variable I, p. 55-6.
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INTEGRALS OF THE FORM [§"f(cos 1, sin f) df

. out and comparing coefficients we have aghy = 1,
bqnia bo = Uy ey aObn+ tee +aub0 = 0, ....But ao;EO
1

a°lg so We can use these equations successively to find by,
an sin z z?

For example if f(z) = — = 1—3—!+ ..., then
byy-+* ° z

1/f) = bo+biz+byz*+ . .. where
(1—'%Zz+ oo Ybotbiz+by2%+ .. J=1.
Hence bO = 1, bl = 0, bz = %, e ey implying
z/sin z = 1+3z%+higher order terms.

We now calculate a residue which will later prove useful.

exAMPLE 4. The residue of z™ %cot =z at the origin.

Replacing z by =z in the series for z/sin z, we find

mzfsin wz = 14+3n%2%4+ ...

74

-2 = —5 COS 7Z—
Hence z~ “cot =z - e

- Ls(l_Jﬂrzzz+ A +HE2E+ L)
nz

The coefficient of 1/z is m(3 —4) = —m, i.c.the residue is — 3=

2. Integrals of the Form [3"f(cos ¢, sin #) dt

If C s the unit circle z(t) = cos t+isin ¢ (0<? fzgm”) 1 of the
x i i contour inte
transform [2* f(cos ¢, sin ?) dt, i % Theorem to calculate
form I c8(z)dz i Cauch)( SIR?; 1thuefunction g is analytic
is is always possible 1 ¢ "
?he la‘;:)ta'il;hliigudingyc and its intenoF gxcepé possibly for
1anﬁanite aumber of isolated singularities inside C.

)

. _az4)),

Specifically, if z = e'* then cos ¢ }( -
45
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THE CALCULUS OF RESIDUES

sin ¢ =1—_(z—1)and Z'(f) = ie'" = jz.
2i z

1\ 1 1\\1
Let g(2) =f(’2-(z+2>,3i< )L
thent

[c 82z = [ gateyz (e = o 7os 1, sin pyq,

Thus (3% f(cos ¢, sin f)ds

2n dt
EXAMPLE. | = j

o at+bcost (a>b>())_
W find I=j L

\“ldz
ca+ib(z+1/z) iz
2 dz
=§m
_2f &
_iLIZ)'

. 1
Since ‘TZ) only has poles where q(z)

- 2_32
are simple poles at — %+ \/IEa b

b
—a=_ a2 __ 12

B = %ﬂ’ then “B = % =1 and SO \OLHB\
Since |« < 8|, we must have

|l <1, |B|>1, and the only
t The reader may also remember this formula by substitutin:
. 2
sin ¢ and df = ‘f—zz in Jlon f(cos ¢, sin 1) dt =IC

= j c&@dz, b

ut strictly speaking we have not justified the use o
differential dz as a separate entity,

46

= 2mi(sum of residues of g at isolateq

singularities inside O).

= b22+2az+b = 0, there

= 1.

pole

g for cos ¢,

/Gl

z)iz
f the

[+ 0]
INTEGRALS OF THE FORMS

2 o f(x) dx

: . 1
f/l— inside C is a simple pole at « with residue WZ) =
of =
4(2)
it 2@’
2 dz ; 21
Hence I = ?SC&G) = @ T J@ -5

3, Integrals of the Form |2, f(x)dx
Under suitable conditions we have . N
© = 2mi (sum of residues of f at isolated singularities
ol in the upper half-plane).

To obtain this result, we integrate round the contour composed

of the semicircle S given by z(f) = Re'* (0<t<2n) and its
diameter from —R to R.

SR

4’~
-R

Figure 12
The calculation is possible if’

) fis analytic in a domain which includes the upper half-plane
(1) fis an

cept for a finite number of isolated singularities
x -
%\fjlogocnot lie on the real axis.

47
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THE CALCULUS OF RESIDUES
.. M . _
(ii) for large R, | f(z)lsii when z lies on the Semicircle

To see this we choose R so lar
all the singularities lie inside th

Sp.

ge that (ii) is satisfieq

and agq
e closed contour of

figure 15,
Then we have

f’in(x)dx+J'st(z)dz = 2mi (sum of residues in the uppe;

half-p]
Now let R— oo, Since plane),
M M
Ust i R =
we haveﬂli)nz= .[ s J@dz = 0.
Thus

. R
élm _[ _gJX)dx = 2z (sum of residues in upper half-plane),
Remark. The symbo] [z

= » f(x)dx actually incorporates two
distinct limits,

[2 fox = lim [° fedx +lim [*reaax. @

Since we have only calculated lim SR R fGo)dx, it is theoretically
L - . . - R*m
possible for this limit to exist but not the individual limits in
(1). For example, if ¢(x) = _22\x , then
x“+1

2 X*+1
,[-r $(x)dx = log( S 1) .
Thus we find that T2 R $(x)

l’i_m J.(ly ¢(x)dx =

=0 andeim JER $(x)dx = 0, but
=, and lim [¥ $(x)dx = + 0. In such a
X—w
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[NTEGRALS OF THE FORM 12 o f(x) dx
s 3 d
is called the Cauchy principal value an
case, lim [R g $(x)dx 1s € o
s denxgted by P[2. $(x)dx. Luckily $(x) = po
1

.. i i ition, there is no
ition (ii) and subject to this conduilon, _

satisfy conil]il;?e(ﬁx)nits. This is because there is a comparison
Pfoblem. wﬁ nite integrals analogous to the real case.} .

test fof 1) is a continuous, positive real-valued func_tlon such
hli Iﬁfx( x| <p(x) for x=K and lim j",é p(x)dx exists, then
tha = X— o

fim % f(x)dx exists. (To prove this, note that |R/f(x)|<

K

X—>®
X X and SD hm K 9 [f(' C)“'c E}UStS t) thz :Dxnpa"lscn

test in the real case; similarly for the imaginary part.) Using

does not

M
condition (ii) and comparing |f(x)| with p(x) = 20 Wesee

* M dx = M M tends to & as X->o0. Hence lim [ % f(x)dx
exists and similarly for lim [¥; f(x)dx. Thus |2, f(x)dx exists.
Y-

A suitable function for this type of calculation is any
rational function 1—1\% where N, D are polynomials such that
z
(i) D(x)#0 when x is real,
(ii) degree D>2+degree N.

© dx __7
—w (P +a?)x? +b%)  abla+b)

i E when a>0,
EXAMPLE 1.

b. ' _ ]
b>’l91;ea Z:nly singularities of the mtegra}nd in t-he. upper half-
plane are simple poles at ia, ib. The residue at ia is

. z—ia _ : i
}T:t (22 +a?)(z*+b?)  2ia(b*—a®)
1 W. Ledermann, Integral Calculus, pp. 21, 22.
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THE CALCULUS OF RESIDUES

and at b it is \1
2ib(a*—b?)"

Thusj (x2+02(;€2 i =2,,,-(i1\+ 1
.l
ab(b? a2
_ T
 ab(a+b)

As a further refinement
, note that we did i
. : not
vf:hbe real on the real axis. The function etm (m >r§q91re /)
ere analytic and satisfies da e
le™2| = |e'm=my| le™™|<1 for y>0 (since m>()
Hence if f(z) satisfies conditions (i), (ii), then 80 does ¢f . f(
; eimz Z).

EXAMPLE 2. Consider f(z) = !
b>0, a#b.

The residue of ™™ f(z) at ig is

(z—ia)eim= e~ ma
zia (22 +a?)(z2 + b?) - 2ia(b* — q?)

— mb
and at ib it js — o
at ib it is 2ib(a? b2) . Thus we have

@ elmx —ma
e = mb

e
(x* +a?)(x2 + b2) 21a(b2—a2)+2ib(a2—-b2)

Equating real and imaginary parts, this gives
cos mx w fe”™ g=mb

[-m W) +68 P = 2 —ai(T— T)
50

m Where a> ()
Nz? + b2 s

———

[NTEGRALS OF THE FORM §2 o™ f(x) dx

Sw sin mx 0

- ————dx =
_, P +ad)x*+b%) *

Notice that if g(x) is an odd function (g(—x) = —g(x)),
25 in the second case, then we must have |2 g(x)dx = 0.
Aso if g(x) is even (g(=x) = gx), then |2, g(x)dx =
2 g(x)dx. Thus from example 1,

© dx ™
So (> +a’)(x2+b?) 2ab(a+b)

and from example 2,

= cos mx g T e e™
o (x2+02)(x2 +b2) - 2(b2_a2)\ a - b |

4. Tntegrals of the Form [ &™ f(x)dx

Integrals of this form are substantially covered by the
conditions of the last section. However we can make a slight
improvement in condition (ii) below.

For m>0, we have [ _e™ f(x)dx = 2wi (sum of residues

of €™ f(z) at isolated singularities in the upper half-plane)
provided that

(i) fis analytic in a domain containing the upper half-plane
except for a finite number of isolated singularities, none
of which lie on the real axis.

M
(ii) for large R, | f(z)lsk; when |z| = R, Jz2>0.

We may use a semicircular contourt as in the last sectiop
and prove that [, e™f(z)dz—>0 as R—>co. However this

+ This method {s used in E. G. Phillips, Functions of a Complex Variable,
Oliver & Boyd, p. 123.
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THE CALCULUS OF RESIDUES

method has a basic drawback: it only calculates

Rli—?i J.‘ix eimxf(x)dx

and we still have to show that

[7_e™ fxyax

exists. This would require a delicate argument. The Comparisgp

test is of no use because we only have |eim* f)|

M
S+ and
f — dx diverges.
E X

A much better method

is to replace the semicircy
by the rectangular cont

our in figure 13:

-X;+iy I, A

Xo+1Y

Figure 13

Initially we choose the rectangle large enough to contain all

the singularities and such that | f(z)| sM onI',, T'y, T'y. If we
z
show that [, Jry Jr, tend to zero, then

xl,l)if]i . IX, €™ f(x0)dx = 2mi (sum of residues of eim= f(z)

in upper half Plane),
52

lar contoyg

|

1
|
|

INTEGRALS OF THE FORM |® e f(x) dx

i d X, tend to oo independently,
ticular, allowing X, an 2
?:1,3:0; that |2, €™ f(x)dx exists.

Y
\ j £ f(z)dZ\ = \L emXa—mt (X, +if)idt
T2

Y M
£ j e ""A—ldtﬁ—
0

X, X,
M
and similarly L‘ e'™ f(z)dz Sz 5
X2 ) X2 _— M
\ J gim f(z)dz\ - \_E e™ =™ f(t4iY)dt sj_x!e 7%
Ta 1 e-mY
< % M(X; + X))

e-mY
For fixed X;, X,, let Y—c0, then 7—>0 and so [p,—0.

Now let X;, X,—>oo then [, [1,~0, giving the required result.

© xeimx

EXAMPLE. I = j dx (@>0, m>0)

e X2+a?
The only singularity of the integrand in the upper half-plane
is a simple pole at ia with residue

. (z—ia)ze'™® _ fae™™ 1
];I—Ifila z? + g* 2ia 2

Hence I = 2nmi.le” "“'. = mie” ™.
Taking real and imaginary parts

0
XOORME g,
e X2ta

© 1 5 o =
XN dx = me™™.
o Xita

33
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THE CALCULUS OF RESIDUES

Since the second integrand is even, we have

W o ar .
ok ] dx = 1 me”™ (wherea>0,m>0in each inte
e gral),

[

S. Poles on the Real Axis

The methods of sections 3,4 ma
where f has poles on the real axi
poles, we draw a small semicircle b
let the radius of each semicircle t
if f has a pole at the origin, we i
contours in figure 14.

y be extended to the cage
s. To accommodate thege
ypassing each of them and
end to zero. For €xample,
ntegrate around one of the

SR
L T
7 i % 2
R -g z R X, - 3 Xy
Figure 14

Letting e—0 leads to the
in the previous sections, If £
define the Cauchy principal

same problem as letting R— oo
has a pole at Xo Where a<x,<b,

value of [® f(x)dx to be
b . Xo—¢ b
P j | f(d)dx = lim { j 7 fdx+ j . f(x)dx} :

It may happen that P[? f(x)dx exists but Jo f(x)dx does not.
1

1
For example p| = dx =0,
wy X
The above method of contour integration gives the Cauchy

54
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POLES ON THE REAL AXIS

. t then discuss the convergence of the
- cipal value; we mus
p[‘]ﬂClp
integral.

© imx

EXAMPLE. dx (m>0).
Using the se:::nd contour of figure 14, we find [, | r;;
i al axis converges a
Jr.“’o and the integral along the re co g

contour and so

imx imx mz
j’ £ dx+'r°em dz+J e—zdz=0 (1)
Ve

s X : X

where y, is the opposite contour to z(f) = e O<t<7) (e
¥, 18 thezsemicircle radius e, described in the clockwise sense).
&

imz 1 = "miz 1 1 i .
g =l ————— = —+g(z) where g is analytic
By 2 z+nz=:1 n! z

and hence g(z) is bounded by M, say, in a neighbourhood of
zero. This gives |[,, g(z)dz| < Mme and so

O R j 2)dz
lim L‘ dz = lim J;‘ Zdz+HO hg(

e—0 z 2—0

n 1 .
=lim{ — | —5ieedt; 40
e—>0 o €€

= —im.
Thus from equation (1)
«© eimx
pj =
— @
Equating real and imaginary parts,

© cos mx ® sin mx
Pj

dx = m.

dx = 0; PJ‘

55
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THE CALCULUS OF RESIDUES

The first integral only exists as a Cauchy principal valye

1
e behaves like e

© o ~f sin mx © s
But P J SY B =i U dx+f 21 dx}
—~c0 S o &0 X e

cos
because near zero

o x

& =5

p Sin mx

= 2 lim dx.
&e—0 3 X

e J sin mx dx exists and equalst g This also implies that
0 X

® sin
J. = dx exists and equals 7.
—  E

® sin mx
Note that the value of

dx is independent of the

0

value of m, provided that m

with the example of the prev
Clearly we have

is positive, (Compare this result
ious section as a—0.)

k

5 (m>0)
® sin mx
J dx = {0 (m=0)
0 X
—g (m<0)

This result is sometimes called Dirichlet’s discontinuous factor.

6. Integrals using Periodic Functions

We can use the fact that 7 is periodic,

satisfying e* = ¢7+2n!
to calculate certain integrals. We illustrate this with a particular
case,

t By comparing this proof with
reader may see the power and ele;
Integral Calculus,

one avoiding contour integration, the
gance of this method. See W. Ledermann,
p. 22, Example 6; p. 37, Example 5.
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N

NTEGRALS USING PERIODIC FUNCTIONS
I

® e e il (0O<a<1).
EXAMPLE | 57 sin 7a

zZ

and integrate f around the contour in

e’
Let f(2) = =
figure 152

_X.|+2-|1 :L

Figure 15

Note that

X2 e~ 1
Jvr‘f(z)dz = j‘_x;e‘;rl dx M

and since T'; is the opposite contour to z(f) = t+2mi
(- X,<1<X,), we have

X2 ea(t+2ﬂ=‘) 2rai - _eix dx (2)
j Sf(2)dz = —j ey af g _x, € +1
Ta -Xy

i ity insi rectangular
Since f has only one singularity mixge the

t 3 ] l t : 'th 'd ina h
i )
> 1 p ?Zi

[, f@z+ [ @zt [ ez [, fleddz = ~2aiet.
™ 2

Let X,—»00, X,—>c0, then assuming [,—0, fr,—0, we have
1 ]
from (1), (2)
57
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THE CALCULUS OF RESIDUES

R e
(] __ean)J\ dx = _2,,rfeixa
-®

e*+1
. ©  ex — 2rrieina
1.C. p dx = —_—
—n€+1 1— eZma
2ni
= eima o™ ina
™
sin mq

Thus to obtain the required result, it only remains to show that
Irs Jr~0. But on T, we have z = X,+it 0<t<27) and g,

Iea(X1+ it)l eaXz X
@l = = 2 €
I |exz+|t+1| IeXz+it+1|<eT_1
(since |X2* ¥4 1| |eXatin 1 _ X2,
aXx
This gives j f@de <5 5,
rz exz—l
and this tends to zero as X, 2—>00 since a< 1,
On T, we have z = — X, +it (0<1<27) and so
|ea(-X1+tr)| e~ 9X1
'f(z)l - le—x1+i,+1|<1_e_x1 .
. . —aX
This gives '[ f(2)dz|< e 2w
11‘ l_e_xl

which tends to zero as X;— 00 because >0,
Thus the value of the in

finite integral is proved.
By substituting ¢ =

e*, we find

J'°° e © g

dx = —_——

~we€+1 o t+11-
58

SUMMATION OF CERTAIN SERIES

This givest

) tn—l -
j dt = = O<a<1).
o t+1 sin 7a

7. Summation of Certain Series

The functions cot 7z, cosec 7z both have poles at 0, +1,
+2, .. .and so prove useful for summing series. If f is a
fl-mction which is analytic at z = n, then f(z) cosec =z has a
simple pole there with residue

lim (z—n)f(z) cosec 7z = lim M

20 10 Sin 7(n+h)
1 wh
= I s R
_ (=1yfm)
a—
Also f(z) cot 7z = [ f(z) cos nz] cosec =z has a simple pole at
z = n with residue@ :
™

Let Sy be the square with vertices (N+1)(+1+1i) para-
metrized in the anticlockwise direction as in figure 16.

The contour Sy is chosen specifically because both cot =z
and cosec mz are bounded on Sy. This requires some rather
cumbersome calculations. First note that on the sides of Sy
parallel to the real axis z = x+iy where |y|>%, and on th_e
other sides, z = n+34+it where n = +N. If z=n+}+it
where |y|>4, then

f of
. Ledermann, Integral Calculus, pp. §4—67, where a proo
thi1:; crgsuvlz i:‘;i:en by real variable methods. It is of necessity very tech-
nical and this again illustrates the power of the theory of residues in
those cases where it is applicable.
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[

(N+%>(-1—f)

+

(N+3)(a-i1)

Figure 16

080 72| = (Hel™ —e™ %)~ (3 o] — o= tne

Also [cot z| =[SOS TE| _ | +eT i e+ e
e™™ 4™
P COth|ﬂyl<cothg.

Ifz = n+3+ir, then

leosec mz| = |sin 2|1 = |cos im|~* = (coshlme))~1 <1,
and

B . 1—e™2t
lCOt ‘erl = ltan ltl = —+T_2' <l1.

60

AN 4 da

(N+3 Y- 1)

T (N4 1)

= (fleT™ -1 = (sinh|my|)~1 < (sinh f)_l
2

SUMMATION OF CERTAIN SERIES

By Cauchy’s Residue Theorem
[syf(@)cOt 72 dz

— 2xi{sum of residues of f(z) cot 7z inside Sy}.

A s
If | f(z)\gl—z—‘i for |z|> R where 4, R are positive constants,

then [syf(2) cot 7z dz—0 as N—oo. This follows because
|cot mz| 18 bounded on Sy ie. |cot mz|<M and so

A
j f(2) cot 7z dz <z M@N+4)
Sy

which tends to zero as N—>co.
A
Hence if |f(z)| S‘z—lz for |z|>R, then as N—oo, the sum
of the residues of f(z) cot nz inside Sy tends to zero. Using the

fact that if f is analytic at z = n then f(z) cot =z has residue
f(n)

there, this allows us to sum a series involving f(n).
aw

EXAMPLE. f(2) = lz .
zZ
At an integer n#0, z~2cot =z has a simple pole with residue
1/(n*w). At the origin, as calculated on page 45, z~*cot mz has

a triple pole with residue —4. Hence the sum of the residues
of f(z) cot =z inside Sy is

. d ot Yt s A
(—N)2n+"'+(—1)21r+ 3 ) % T TN

N
AN
e n? 3°

n=1
As N—>00, this tends to zero and so

61

y TN



S _

THE CALCULUS OF RESIDUES

1
——

W] -

=0

n

1

[+ o)
ie.
n
n=1

A similar calculation with cot =z replaced by cosec nz gives

n? 12"

ne=1

[ —

2

[¥)
O\:‘ =

EXERCISES ON CHAPTER THREE
1. Calculate the residues in the following cases:
(1) z73sin2z (z#0), residue at z = 0.
(i) exp(1/2) (z# 0), residue at z = 0.

(fii) e’z (n a positive integer, z#0), residue at z = (.
(iv) z2(z2+ g2)-3 (g4 >0, z# +ia), residue at z = jq.

V) Q4224 z4)1 (z#exp(%"i) r=1,2 45

exp i
E

2. Show that Jm Cos 6

do = 2.
0o 2—cos 6 2
T
3. Show that a - _" , :
& _[ 0 @2+ sin2f dr = V+a2) (a>0). (Hint: substitute

6= 2t)
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), residue at

4.

10.

11.

12.

. Evaluate f

EXERCISES

If C is the unit circle 2(f) = e" (0<t<2m), calculate by residues
J' ¢*z—"! dz where n is a positive integer. Hence show that
c

; 2n
J-m exp(cos f) cos(nt—sin t) dt = —

0

an exp(cos ?) sin(at—sin f) dt = 0.
0

©  dx

o 1+x2+x4"

® cos mx
. Evaluate f dx
0

Pt (@a>0, m>0).

[oe] x2
. Prove that J‘

T
. (x2+a2)3dx = (@>0).

. Ifa>b>0, m>0, prove that

© x3sin mx . m (a2e-ma— pRe—m)
J - o (X2 +a2)(x2+ b2) az— b2 )
. Use the rectangle with vertices — X1, X5, Xo+mi, — X;+i to
0 ax
show thatj ¢ dx=—" (—1<a<l).
- Cosh x cos ima
& .
Prove that PI il dx =" Sina (a>0).
- A2— X2 a
> 1
Show that ol i Y
n2 12
n=1

Show that (% + 1) cot mz has poles at every integer and at £,
-z Z

Find the residues at these points when ¢ is not an integer and

«©
1 2§
in this case show that = cot n{ = : + _m"
n=1
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CHAPTER FOUR
Analytic Continuation and Riemann Surfaceg

1. Analytic Continuation

We now return to ato

pic discussed at the end of Function,
of a Complex Variable I which will allow yg o describe
‘many-valued functions’ In terms of

An) . : (single-valued) functions_
This is of interest when discussing co

Recallt that if £ and & are analytic functions defined in the
same domain D and f(2) = g(2) for all z in Some non-empty
open subset of D, then f(2) = g(2) throughout the whole of
D. 1t is this constraint on analytic functions, which forces two
al everywhere in their joint domain
re only assumed equal on a smal]
sults which we now explain.
Suppose that /1 is defined in a domain D, and f, is defined
in a domain D, where D, and D, overlap.

Under these conditions we say that f, is a direct analytic
continuation of f, from D; to D,. Of course if f1 is analytic in
D, and we are simply given the overlapping domain D,, then
We cannot be certain that a direct analytic continuation to D,
exists. However if 5

exists, then it is unique, for suppose that
g is an alternative direct anal

ytic continuation of fi to the
domain D,, then g(2) = f;

(2) = f,(z) for €very point common
to D, and D,. But this set of points is a non-empty subset of

t Functions of q Complex Variable I p. 62,
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ANALYTIC CONTINUATION

Figure 17

i en. (For if z lies in both Dy, .Dz then since
?)2 ?sng;:nailsloerzgs an(el-neighboqrhood of z lymfg cgﬁiﬁ?g
in1 D;,. Similarly there is an sz-nelghbouﬂ&c:od ;ei gzh contained
in D, and if ¢ is the smallc;r ;f 81;1:12 t;w:v hizh:hows ourhood
z lies in the overlap of D, a 2 .
?)t;rerlap is open.) Hence g(z) = £2(2) t.hrou.ghouiz 12120 T
The notion of direct analytic con'unuapon b % sl
used when D, contains D,. Here we be‘gn} mﬁonf pumdo
function f; in D, and try to fmd an analytic uncD ”[z'hl e
on the larger domain D, which gquals N zln ticl.f This e
of extending the domain on which an analy

iable I,
defined was discussed in Functions of a Complex Variable
pages 60-62.

EXAMPLE 1. f(2) = ég—l)"zz" |z < 1.

i +i
The function (1422)~! is defined and analytic for z# +
e —1 - - t
d equals i(-—l)"zz" for |z| < 1. Hence (1+2%)7" is a direc
and equ
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ANALYTIC CONTINUATION AND RIEMANN

) SURFACpg
except +i. Evidently there is no direct a

to the whole plane because (14 22)~1
cannot be analytic there.

Sometimes, given an analytic function S defined in 5 d
D, we cannot continue f analytically outsid
the boundary of D is called a natural poup

nalytic continuation
has poleg at +; and g

Omajp
¢ D III thiS case
dary.

EXAMPLE2. Theseries f(z) = 1+z+22 4244 +22"y
is convergent for |z|>1. The unit circle lz| = -

T lisa naturg]
boundary. If w?” = 1, then we can show that

o f(2) does not
tend to a finite limit as z approaches w from inside the unit
circle. Let z = rw where 0<r<1, then

@) = T4z4z24 L 25
= .fl(z) +f2(Z)

We have lim fi(rw) = 1+w+w?2+ ... +w?™"", But since

r—1

a0
w?" = 1, the series f,(rw) = ¥ r*" is a series of real, positive
n=m

m+N

m+N

terms for 0<r<1. Hence f,(rw)>Y r?". But } r*">N+1 and
n=m AN n=m

so for some >0, if 1—e<r<1 then Y. r*">1N. This gives

n=m

Sorw)>1N and since N is arbitrary, f,(rw)—+ o0 as r—>1.
Thus f cannot be analytically continued into any domain

containing w where w?™ = 1. But if a domain D, crosses the

circle |z| = 1, then it includes a segment of the circle. The

Vo
roots of z2” = 1 are exp(ZL,:q) wheteg =1, ..., 2™ These
are spaced at equal intervals around the unit circle, By choosing

m large enough, some point w where w?" — 1 lies in the
segment of the circle inside D,.

Thus f cannot be analytically
continued across |z| = 1.
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ANALYTIC CONTINUATION

i i ntinuation
ss of direct analytic co .
ome cases the process T defined in a domain Dy,
In s ated. Given 2 functlon_ y de PR
may be Iepf1 a direct analytic continuation fito a © na]ytiz
we may fin nd D, overlap. Then we may find a4 dll)re wzere "
where D1 7, of the function f, to a domain D; y direci
oontinuatloilla ; After a finite number of steps Iv)ve fI‘m ; hai irec
: s
and D3 OVeTX . of f,_4 from D,_; to D, In case,
i inuation f, of /-1 110M Y-
an?lytlil cc(l) I:;J indirect ;nalytlc continuation to theh d((l)'ma(.:tnafc,i
u 18 Cafenction £, defined in D;. We refer :co bot. ire - anc
o} t.he , nalytic continuations simply as analyttlc con :
ir-ldlr?aAa;ly two analytic continuations of a given function
s .'d tly analytic continuations of each_otht?r.
i in d of indirect analytic continuation 1s much more
o S i ion. The main problem is
i direct continuation. 1he 1
omglieatsd. Ba be unique. This is because we might
that it need no longer

use a different sequence of domains linking D, to Dy

i turn to the original

mple we might eventually returr . :
dolr?;ine:id Il)lave D, = D,, but find the indirect conUnuatlc];n
f, different from the original fl}IlCthIl hi We define the
CZmplete analytic function to consist of the original function
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ANALYTIC CONTINUATION AND RIEMANN
SURFRy
Crg

N the cage Where
O some

: Omajp

and all its possible analytic continuations, |
we have different analytic continuations ¢
the complete analytic function is called my
it is called uniform. Examples 1, 2 are uniform,

d ata poing z

0t 2, thep
? te analytic function
points z = +i are «f .

sin iti .
example 2 all the points |z|>1 are singularitigel.::?Jlrltles " in
Note that a multiform complete analytic functjon is in
sense ‘many-valued’, but we have formulated it g5 5 collectio:
of (single-valued) functions, Two functions in the collection
may have different values in the same domain, but they are

analytic continuations of each other.

EXAMPLE 3. The logarithm is multiform., For any integer k we
can define log, z in the cut-plane by

log, z = log |z|+i (arg z+27k)

where —w<arg z<x. In particular, for k =
principal value Log z = log,

analytic continuation of Log.

0, we have the
z. We will show log, is an

Let D, be the half-plane given by z = re® where r>0,
(n—2)3—27< < %ﬂ Note that D,,, = D, for every integer n and
D, D, are as in figure 19.

If zis in D,, write z = re® where (n—2)§< 0<n_27r and define

J(2) = log r+i6.

Arguing as for Log z in the cut-plane, f,(z) may be seen to be
analytic in the domain D,. If z = re® s in D, and D,,, then
JA2) = f,+.(2) and so Jn+1 1 the direct analytic continuation of
Jafrom D, to D,, ,. By induction, £, is an analytic continuation
of f, from D, to D,, for any m and n. In particular, in the

domain D,,, = D = f(2)+2xi is an

w We see that f,, ,(z)
analytic continuation of Ju(2). The function log, defined in the
68
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ANALYTIC CONTINUATION

Figure 19

incides 1 ith the function fy;4,. Thus f,‘,‘.+ 1

= e coincides in D; Wi | . st

?“:gﬁly a direct analytic continuation of 19g,,. ¥ Zvnzytz:;t vith

1]_S,c’ = log, in the cut-plane, we find a chfnn 1;) lytds oo
tiniations, fl in Dl,fz in Dz, =8 o ’f4k+l m Dgr+1 1

finally log, in the cut-plane, showing that log, isan analyticcon-
tinuation of Log in the cut-plane.

i = iO, >0,
Note that f, +3isdefinedin D; (the half-planez = re”,1

T<0 <3—"> and D, includes all the points on the negative real
2 2

. o ¢
axis except the origin. Hence the anal_ytxc coxltntllll:aslr?gxli ﬁ?hzs
Log is defined on the negative real axis em?epf el o
the only singularity of the com.ple.te an_alytlct gfdomains e
the origin. By analytically continuing via a se e ——
the origin we obtain different analeync :gnn:rt: io p‘.)int.

a singularity with this property 1S called a

We now consider multiform examples which appear

in contour integr-ation. . ' t oon.
na;‘t:l}ail;yanalytic in a domain D, fix a poqmt zDO ;noﬁ a;n | oon-
sider the integral of f along a contour y in T 5
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ANALYTIC CONTINUATION AND RIEMANN SU

arbitrary point z. We know that if Sfhas a Primitiye
(ie. F' =f), then the value of this integral s Fz)~p
In general such a primitive does n (zo).

ot exist. Howey
G : er w
subdivide into subcontours y,, © I

ay
A | *> ¥n Such that eacp
contour y, lies in an open disc D, which sub-

L is itself contajneq ;
D. (The proof of this in the general case requires a techzjd :,n
which we have not developed, but in particular cases its tr?xt}?
should be fairly evident.)

RPACES

Fin p

Figure 20

Now in a disc an analytic function doest have a primitive
which is unique up to an additive constant. Let F, be a primitive
forfin D, (r =1, ..., n). By definition F, = fin D, and
F,yy'=fin D,,, and so F,'—F,,," = 0 in the overlap. But
the overlap of two circles is a domain and so

F,.1(z) = F(z)+constant

for all z in both D, and D,,,. By adding a suitable constant
to each of F,, F;,...,F, in turn, we may suppose that
F,.+y = F,in the overlap of D,and D, forr=1,2, ...
n—1. This yields an example of analytic continuation.

T Functions of a Complex Variable 1, p. 47,
70
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final points of 7, be z,_4, Z, then by the

PO an d ‘
e 1ti&liﬂélhcorem of Contour Integration,
damen

[ faydz = Fle) =iz )
Ir

d D, we have
e 3 overlap of D,-; and Up
since 23 [F ﬂ)]e Adding up the integrals along the
= I'N\&p-1)"

=2 s
F'l; 1(zt;t-oim)lrs and cancelling F, W o R
subco

n, wWé find

Fun

[ 1)z = Fi(z)—Fizo)- @
L

i imitive F throughout D then in
e if f had a primitive :

Ot'. c;)al;rsF ' — F’ in D,. Adding a constant if necessary,
partlczy sup;)ose that F, = F restricted to D;. By suc;es—s_w;
riviiel::]t analytic continuations, Wwe then find tém;s t,o..the
restricted to D, forr=1,...,7n and so (2) redu

Fundamental Theorem J. f(2)dz = F(z,)—F(zo)-
; isol i ity in D with non-zero
However, if f has an isolated singularity -zero
residue p, then selecting a closed J'Ol‘d.an cor!tour Yﬁnd
winding once anticlockwise round this singularity, we

f )z = 2mip. C)

Since y is closed, z, = z, and from (2), (3), Fy(zo) = F,(zo)-li;
2wip. Hence F,, F, are not equa:l and we have' an e;;z:l:;;; :
which is multiform. The isolated singularity of fgives a rane
point of the complete analytic function found by continuing
the primitive Fj.

2. Riemann Surfaces

The notion of analytic continuation explainedI in t?t?c;?::
section is quite difficult for the beginner to gfrasl{)a.lt ; 1;1 upae
it is di isuali 11 picture of w. .
it is difficult to visualize an overa . ngo.

i ituati best described by using
is total view of the situation 1s Des .
;Ic}:: :f) a ‘Riemann surface’. We will illustrate this concept by
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ANALYTIC CONTINUATION AND RIEMANN

two particular examples, first considering the
logarithm. .

If z = €, then all the solutions fo

z#0) are given by w = log|z| +i(arg z + 2xk) Whereoiz (Wherg
<7, and k is an integer. Restricting ourselves tg the oS aFg z
value given by k = 0 in the cut-plane, we haye anp;mmpg.u
function and in the last section we saw that we could rr;alytlc
all the other values by analytic continuation, Each tinf o
pass round the origin in the anti- - e

clockwise directj
of w = log z is increased by 2i, Sl e eline
We now describe another method
phenomenon by introducing a Riemann
the advantage that we obtain a single-valued function which
takes all the values of the logarithm

but this function will
now be defined on the Riemann surface and not on the
complex plane.

Consider the complex plane to be covered by an infinite
number of superimposed transparent sheets (each sheet
covers the whole plane). From every sheet remove the origin
and imagine a cut being made along the negative real axis in
such a way that this axis is considered to be affixed to the upper
part of the cut. Now smoothly join the negative real axis of
the upper part of the cut on each sheet to the lower part of the
cut on the sheet above. If we mark a point on one of the sheets
and imagine it to move over the cut in the anti-clockwise
direction then, because of the smooth join, we suppose that
it moves on to the next sheet above. This means that if the
superimposed sheets were pulled apart and viewed from the
side, then the system would look rather like an infinite winding
staircase. This system of sheets is called the R
of the logarithm.

Looking at the Riemann surface from above, since the sheets
are transparent, marking a point on one of them represents a
non-zero complex number. However, given two real numbers
r, 6 where r>0and (2k— 1)< 0 < (2k + 1)m, then by numbering
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ase of the

I W in termg

of looking at b
surface. It wil have

iemann surface

RIEMANN SURFACES

ir of
i er we can suppose th?t the pair O
the sheets " as‘ieex;ireg:;;t on the k”f sheet Whl:;’; ::p;?;n;:
pumber® ’ gzlmber re®. Thus the Riemann §uhin Jui be
the compl? nhave the advantage of dls’ungmili hgare e
considered to i0+270) Jo = 0, +1, +2, ..., whic o equil
the symbos 1 but lie vertically above one ano

sheets of the Riemann surface.}

fine the logarithm on the Riemann surface by
PDe

log P = log |z| +i(arg z+27k)

' i . t representing the complex
i oint on the k™ shee

whergelr’ ;S ;g:efnatively, if z = re® where r>0, 2k—1)r <0<

num .

then .
Gkt T log P = log r+if.

Note that the logarithm is a si.ngle-vah.xed fu?c:ﬁgv:; 2:
i nn surface. It is also continuous, the in - se
I;wﬁl a point P tends to Py, then log P tends to log P, (ev
:;v}?en P moves over the cut from one sheet to the n:l(t):cany
We can now begin to see what happens ?vhen v:; a;l ayﬁthm
continue some analytic, single-valued chou.:e Of. eﬁgi o the:
To do this we just look at the corresponding situa
i ace. . .
Rl:;::ag?sts 1i-fat;nark that if we are gi_ven an anallytlc f:lﬁ:;tl:; zf
defined in a domain D where £(2) 1s‘ alwa)fs ’a 05221 Rjemam;
then this gives us a rule to choose a don:}manI‘ll el
surface which corresponds to the' domain D tlhm o comp
plane. This is because f is a qhmce of l‘ogag'lfor D ement
imaginary part of f(z) is a particular choxceth e e
e 'zliln . Z:ezznzsﬂe::z"’ g: the k™ sheet
. & _ .
lvt;::l: n(I;kS }l—rf;:e < ‘gZIEZk +rl))1r. (This construction does no

. . |] f
| T] . ] .1 1 . l l l :
gl n

given by (2k— Dr< 0<Qk+1m
73
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nalytic
1 is just a “flattened version’
in the complex plane of what is happening on the Riemann
surface.

We can represent other ‘many-valued functions’ as single-
valued functions on Riemann surf:

aces. In general, an ‘n-valued

function’ requires » sheets. We illustrate this by considering z*.

IS requires two sheets each with the origin removed and
cut along the negative real

axis. If z = re® where r>0,
—7<0<m, then choose z* — r*e*® on the first sheet and

S L s I on the second. As a point moves
over the cut in the anti-cloc

kwise direction, it passes from the
first sheet to the second and after a complete circuit round the
origin again, when it crosses the cut again, it passes from the
second sheet back to the first. The Riemann surface is found
by taking the two sheets in figure 21 and joining together the
sides of the negative real axis marked ‘+’ and those marked
[ ’

This construction can only be performed in an idealized
situation since it is not possible to physically cut two actual
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EXERCISE S

Sheet I
sheet 1 ?
: g +
om—
Figure 21
. ibed without
in the manner descri
ue them together
sheets and gl

ing ‘4’ to ‘+’, for
d self-intersections. (Afte‘r glum?g , :it htout E g
unwanted is not possible to fix ‘=’ to "— Noetaeny
Ly ed sheets.) However by a st.retch of t_ e 13’llze e
thxough_ o ﬁl . re 21 it should be possible to.v1$u e
o ¢ o t. This brings us to a fitting .pomt to end the
iqeahzzgso::e gle mind grapples with an idea beyon
:;S;:EISRS of three dimensional existence.

EXERCISES ON CHAPTER FOUR

i i r series:
Find analytic continuations of the following powe:

LY (=t zl<l

n=1

2, '2023" |z <1.

3. i 3nzt |z <1,

. a (o)

3 i i 1?
Y (- 1)"1(z"/n) outside the disc |z| <

n=1

: : [ l .
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et
ur from
Ve real axis or the Origin Te
¥ be the closed contour composed of y; followeq bY y2. Show th :
1/zdz = 2mi. )
7

- For 20, write z = rei®, 1o p be the cut-plane given by
—w<6<w and let D, be the half-plane (n-2)" < g™ By
2 2
successive direct analytic continuations fro
D to D,,

M D to Dy, from
from D; to D3, from D; to Dy, from D, to Ds = p
and from D, back to D, show that — ;% j

. . 1’
1S an indirect analytjq
continuation of z* in D (where 7+ — riet

r>0, —m<6<m),
Describe the Riemann surfaces for the following
functions’:

‘many-valuedq
8. zt.

9. z* for a positive integer . 10. (z—1)~%,
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Solutions to Exercises

Chapter OT¢ (~1<1<D), wild = €00 (~1<0<D), angle
O e arg wiO)—arg wi(0) = arg | —arg(l+)=",
betw g
smilarly for (ii), (ii). .
similer yn 0<t<l), wat) = t"e™ (0<t<1). T.he first has_traclc
2. Wi @ =bt ¢ ; 0\0:<_x$_1, the second is the line semt ¥y ;t
gl‘:‘:; nZ: ?rom zO, 0) to (cos na, sin na). These two lines are
x
angle na. . - - - - -
. 24+ 3y2)+x = 0, circles touching imaginary axis :t the: origin,
> ;((J;2+ y2)+y = 0, circles touching real axis at the origin.
5. ax3—3dx2y—3axy2+dy3. f(z) = (a+id)z3+ik, (k real).
6. (2+1) sin z+ (1 +2i)z2 + ik, (k real).

Chapter Two s
1. z-5+2“2+2£!+ T, ——+ « . . (z¢#0) pole of order 5.
21 1. +(_‘l)f(%"_)'+ .. .(0<|z—a|<2a)
m—MZ . e (2a)"
simple pole.
3.1 1

+- G 4 .. (2#0) essential singularity.
2 st T

1
+22 1 —_
4. Log (z zl) = Log(1+2)— og(l z)

, 1,1 1

z h—t .t —
- (z_z_z+ S L ')+(z+2z2 nz"
. 2

+ ) (0 <|z| <1) essential singularity.

1
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SOLUTIONS TO EXERCISES

5 1 _22+ (= 1Dr2z2n-s
. 122 E! . e +\(2Tl)!\+ $E . (Z#O) Simple pole,
6. —(z—l)“1—1—(z—l)— e (5
simple pole. o (0<Iz—1|<1)

—_—

; . e?
since lim z3 - =1
z—0 Zzsin2z

8. (2) simple pole (since limz 2 _ lim - 4322
20 l—cosz

9. (a) isolated essential singularity, (b) pole of order 2,
10. (a) essentia] singularity, (b) removable singularity.
11. (@) pole of order 3.

(b) essentia] singularity.
12. Use 2(2) = e, f(2) = —az* in Rouché’s Theorem.

Chapter Three

L®1 )1 gl V) — () (=3+iy/3)-1,
n! 16a

V3 me —ma
5. V2 6

6 2a

. 1 1 .
12. residue of (‘+— cot nz at n#0 is
é—z 2z

(54"—) [m, at the
E—=n n
origin it is 1 /¢ and at it is cot n¢,

Chapter Four
L (1+2) z# —1

3' 322(1—23) -2 z¢ 1, eZni/s’
4. Z(—l)"_l(z/") =

tinuation gives a]
zZ#£ —1),

2. (1 = 23) -1 74 1’ 6,21:(/3’ e41u'13

e*i3 (hint: differentiate
Log(1 + z) lz] <1,
I the values

(1-23)-1)
Indirect analytic con-
of the logarithm of 1+ 2z (where
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,LogZz=

OLUTIONS TO EXERCISES
S i alogous
lim ¥ z* does not exist by a proof analog
1 z
=1, 1'.he:nz n

in crossing |z = 1
Zzz" given in the text. Any domain
for . ;
o) that oint. . _ ut-
:;ontains such a P_ z(—m<arg z <'rr). is analyt-lc_ in ;]:ozed.
logLZl Z;ga:tglve real axis including the origin r
ith the . w3
plane with 1 j, 1/zdz = Log i—Log(—i) = mi. Similarly
fi. (Log z) = 1/= 7

is analytic in the cut-
az log|z| +i argsz (0 <arg,z<2m) is analyti
log«z =

1o . Here
ith the positive real axis and the origin s ;
1"":11ane Wl) 1)z and j 1/zdz = logs(—i)—logyi = =i.
—-(logs2) = 72 . tour
dz(l * 1)z dz = wi+ =i = 2mi. (Remark: Any closed conto
Hence |,

igi i dz = 2nni where
» not passing through the origin satisfies Ll [z

1 ber of times y winds
i i e infeger n 1s the' num of ti ah
T nd. t‘f“ig;;n'r?rry to visualize this by cqnsxdenng the situa-
fc?u:i; fhe Riemann surface for the logarithm.)
io

! 0 . * i
2 2

i l Bar in Dj, riet® (r<0<2n) in Ds,
in Dj, rieti? (§<9<—2— 1
i is may
1o1i0 1'r<6<§z in Ds= D;. Replacing 8 by 8+ 2, this
rie 5 5

s ‘ﬂ'< o <_1|'_ in Dl- But '*e}ioi"l
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i h sheet
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1o alsonf l.tth enelge;ltive real axis through the origin as farasz =
g the
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