Evolution from unicellular organisms to larger multicellular ones requires matching their needs to the rate of exchange of molecular nutrients with the environment. This logistic problem poses a severe constraint on development. For organisms whose body plan is a spherical shell, such as the volvocine green algae, the current (molecules/second) of needed nutrients grows quadratically with radius, whereas the rate at which diffusion alone exchanges molecules grows linearly, leading to a bottleneck radius beyond which the diffusive current cannot meet metabolic demands. Using *Volvox carteri*, we examine the role that advection of fluid by the coordinated beating of surface-mounted flagella plays in enhancing nutrient uptake, and show that it generates a boundary layer of concentration of the diffusing solute. That concentration gradient produces an exchange rate which is quadratic in the radius, as required, thus circumventing the bottleneck and facilitating evolutionary transitions to multicellularity and germ-soma differentiation in the volvocalean green algae.
The motility of microorganisms is primarily thought to enable access to optimum environments. Yet some species of colonial motile algae thrive in restrictive habitats such as shallow evanescent puddles, all the while paddling energetically with their flagella. What is the significance, beyond locomotion, of this collective coordinated beating of flagella? Algal metabolism requires exchange, between organisms and water, of small molecules and ions such as CO$_2$, O$_2$, and PO$_4$$^{3-}$. Rapidly growing organisms that are “large” in the sense explained below, must augment diffusion with effective modes of transport from remote reaches of their environment. The volvocine green algae can serve as a model system for understanding how exchange of nutrients and wastes varies with organism size, as in the transition from unicellular to ever larger multicellular colonies. The Volvocales range from the unicellular $Chlamydomonas$ to large colonies of cells, eventually leading to $Volvox$, comprising 1,000-50,000 cells (Fig. 1). They include closely related lineages with different degrees of cell specialization in reproductive and vegetative function (germ-soma separation), which seem to represent “alternative stable states.” Phylogenetic studies show that transitions in cell specialization have occurred multiple times, independently, to geometrically and functionally similar configurations, suggesting that there is a selective advantage to that morphology. The volvocalean range of sizes, over three orders of magnitude, enables the study of scaling laws; from a theoretical perspective, the spherical form of the Volvocales simplifies mathematical analysis.

$Volvox$, the largest colonies in the lineage, are formed by sterile biflagellated $Chlamydomonas$-like somatic cells, with outwardly oriented flagella, which are embedded at the surface of a transparent extracellular matrix (ECM) which also contains the germ cells that develop into daughter colonies. In some species, germ cells start flagellated, but after their first mitotic division the flagella are absorbed (e.g. $V.$ aureus), whereas in others (e.g. $V.$ carteri) the germ cells are never flagellated. Directional swimming due to the coordinated beating of these flagella is also accompanied by rotation; $Volvox$ is from the Latin volveo, to roll. Bell and Koufopanou suggested that the ECM is a storehouse (“source”) of nutrients for the germ cells (“sink”). They interpret this source-sink coupling as a mechanism that increases the uptake of nutrients by the developing germ cells located within the colony. Moreover, they showed that germ cells from $Volvox$ carteri, when liberated from their mother colony and freely suspended in the growth medium, grow more slowly than those embedded in intact colonies. Those experimental studies did not consider the external flow created by collective flagellar beating of the mother colonies. Our studies were designed to investigate the effects of
such fluid flows, and showed in fact that they positively influence germ cell growth rates. Indeed, externally supplied flows can replace those due to flagella and return germ cells to normal growth rates. Flagella obviously confer motility; we infer that they also play a subtle but crucial role in metabolism. Niklas suggested that as organisms increase in size, stirring of boundary layers, yielding transport from remote regions, can be fundamental in maintaining a sufficient rate of metabolite turnover, one not attainable by diffusive transport alone. Yet there has not been a clear quantitative analysis of this putative connection between flagella-driven stirring and nutrient uptake. Here we investigate the hypothesis that those flows facilitate, even “encourage,” the transition to large multicellular forms. We analyze the idealized problem of the scaling that relates nutrient uptake to body size. Measurements of the actual flow fields generated by colonies confirm the analysis. Since we also aim to understand the physical constraints leading to germ-soma differentiation, we investigate a body plan without such differentiation and examine its failure to deal with those constraints.

Results: Bottleneck Radius

Consider the case in which only molecular diffusion in the suspending fluid governs transport (uptake or rejection) of a chemical species whose concentration is \(C(r) \), where \(r \) is the radial distance from the center of the colony. When more than even a few percent of the colony surface is covered by an array of absorbers or emitters, the diffusion-limited rate is well-approximated by that of a sphere uniformly covered with absorbers/emitters. We now focus, for simplicity, on nutrient acquisition. By Fick’s law, a gradient in concentration yields a flux. We define the uptake rate or current at the surface of the sphere as the integral of the flux over the area of the sphere. Our sign convention is that the current is positive if the sphere takes up nutrients. Therefore, if \(C_\infty \) is the concentration far from the colony of radius \(R \), then the steady-state concentration is \(C(r) = C_\infty (1 - R/r) \). Furthermore, if \(D \) is the diffusion constant and \(dS \) is the element of surface area of the colony, then the inward current \(I_d = D \int dS (\partial C/\partial r) \) is linear in the colony radius \(R \),

\[
I_d = 4\pi DC_\infty R .
\]

The timescale \(\tau_D \) on which this steady-state profile develops from an initially uniform concentration is \(\tau_D \approx R^2/D \). For a typical colony of radius 200\(\mu \)m and diffusion constant of \(D = 2 \times 10^{-5} \) cm\(^2\)/s, \(\tau_D \approx 20 \) s, which is very long compared to the flagella beat period but short compared to the life cycle. The current (1) can be compared with the metabolic requirements of a colony with
surface-mounted cells,

$$I_m = 4\pi R^2 \beta,$$ \hspace{1cm} (2)

where β is the time-dependent nutrient demand rate per unit area, including the requirements of internal cells (e.g. germ cells), and storage by the ECM. The diffusive availability can exceed the nutritional requirements at small radii. At sizes greater than the bottleneck radius

$$R_b = \frac{DC_\infty}{\beta},$$ \hspace{1cm} (3)

when $I_d = I_m$, diffusion is insufficient to feed the organism (Fig. 2a). The diffusive rejection of waste products is also limited by a bottleneck radius of the same form as Eq. 3, with β signifying the forced emission rate of waste, and C_∞ replaced by the difference between a molecular waste concentration at the surface and at infinity.

Estimation of the bottleneck radius includes several considerations. First, the demand/consumption rate β varies with time and environmental parameters (e.g. light, temperature, nutrient availability) during the life cycle of Volvox. Second, there is uncertainty as to which of the key nutrients is limiting. Third, it is arguable whether the boundary condition for waste rejection at the colony surface involves a specified flux or a concentration. Mindful of these difficulties, we can make a rough estimate using parameters appropriate for either phosphate$^{13} \left(D \simeq 10^{-5} \text{ cm}^2/\text{s}, C_\infty \simeq 6 \times 10^{14} \text{ cm}^{-3}, \text{ and } \beta \simeq 10^{12} \text{ cm}^{-2}\text{s}^{-1} \right)$ or oxygen $\left(D \simeq 2 \times 10^{-5} \text{ cm}^2/\text{s}, C_\infty \simeq 10^{17} \text{ cm}^{-3}, \text{ and } \beta \simeq 10^{14} \text{ cm}^{-2}\text{s}^{-1} \right)$ measured in $V.\ carteri$ using standard biological oxygen demand (BOD) bottles). We find $R_b \simeq 50 - 200 \mu\text{m}$. Intriguingly, the low range of the estimated R_b is comparable to Pleodorina (Fig. 1D), the smallest species where soma differentiation occurs; the high range is comparable to the smallest germ-soma differentiated Volvox colonies (e.g., Fig. 1E).

Note that Pleodorina is considerably smaller than Volvox. Recall that in the latter, the number of flagellated surface-mounted somatic cells is much higher and germ cells, which are non-flagellated, lie in the interior of the colony.

As a consequence of the dual role played by the flagellar basal bodies as both anchoring points for flagella and as microtubule organizing centers active in cell division, undifferentiated colonies are subject to the “flagellation constraint,”5,14 which prevents the use of flagella during cell division. It is therefore appropriate that the largest colonies without true germ-soma differentiation would have a maximum size comparable to the bottleneck radius. For the non-motile part of the life cycle, which also has the greatest metabolic needs, these colonies would just barely be able to obtain sufficient nutrients by diffusion alone.
Results: Flows, Advection, and Nutrient Uptake

How does advection, the transport of solutes by flow, modify this picture? The governing advection-diffusion equation is

$$\frac{\partial C}{\partial t} + \vec{u} \cdot \vec{\nabla} C = D \nabla^2 C,$$ \hspace{1cm} (4)

where $\vec{u} \cdot \vec{\nabla} C$ is the advective rate of change of the concentration field $C(\vec{r}, t)$ and $D \nabla^2 C$ is the diffusive rate of change. Here, the vector $\vec{u}(\vec{r}, t)$ is the spatially and temporally varying fluid velocity. The standard measure of the competition between advection and diffusion is the (dimensionless) Peclet number, \[Pe = \frac{2RU}{D}, \] \hspace{1cm} (5)

Our measurements\(^4\) of the typical fluid velocity near *Volvox carteri* (Fig. 1E) have shown that Pe can range from $100 - 300$, implying that long-range diffusion is negligible compared to advection. For large Pe, the absorption rate I_a generally is a power-law in Pe, as a consequence of the boundary layer that forms near the sphere’s surface. For the no-slip boundary condition at the surface of a solid sphere, Acrivos and Taylor\(^{16}\) showed that $I_a \sim RPe^{1/3}$ for large Pe. In important recent work, Magar, Goto, and Pedley\(^{17,18}\) found that the exponent changes when the boundary condition allows slip; with a prescribed tangential flow, the current is $I_a \sim RPe^{1/2}$.

Since we seek the size dependence of the advective transport, we require a model of the flow field created by the flagella. It is impractical to calculate the detailed flow generated by the array of flagella at the colony surface. Instead, we develop a simple model in which the details of the flagella length, beating frequency, and waveform are subsumed into a single averaged parameter, the force per unit area f that the spherical surface exerts on the fluid. Using the measured value of the propulsive thrust for *V. carteri*\(^3\) we estimate $f \simeq 0.1$ dyne/cm\(^2\), where we have divided the experimentally determined total thrust force by the area of a colony. Since we prescribe the force per unit area (the shear stress), instead of the tangential flow at the surface of the colony, our flow has crucial qualitative differences from previous work.\(^{17,18}\) Dimensional analysis shows that the characteristic magnitude of the flow velocity U grows with colony radius

$$U \sim \frac{fR}{\eta},$$ \hspace{1cm} (6)

where $\eta = 0.01$ g/cm-s is the viscosity of water. When the tangential flow velocity is prescribed, the flow is clearly independent
of R. In accord with observations3, our model predicts that larger colonies with the same average density swim faster than smaller ones. For example, using our estimate of f and a colony radius of $R = 100 \, \mu m$ we find $U \sim 500 \, \mu m/s$, which is close to observed swimming speeds.3,4

For an idealized model, we take the force per unit area to be directed along lines of longitude, $\vec{f} = f \hat{\theta}$ (see Fig. 3 for coordinate system); it is straightforward to include an azimuthal component of \vec{f} to allow for rotational motion as well (M.B. Short, et al., unpublished). Thus, the boundary conditions at the surface of the colony are vanishing radial velocity and the shear stress condition $\sigma_{r\theta} = -f$, where $\sigma_{r\theta}$ is the stress that the fluid exerts on the surface. Far from the colony, the fluid velocity approaches the swimming velocity $\vec{U} = -U \hat{z}$, or zero, when the colony is held in place. Since inertia is unimportant at the scale of a colony, we find the flow velocity \vec{u} by solving the Stokes equation $\nabla p = \eta \nabla^2 \vec{u}$, where p is the pressure and the velocity field must be incompressible, $\nabla \cdot \vec{u} = 0$. The cylindrical symmetry of the boundary conditions implies that the velocity field and pressure may be represented by an expansion in Legendre polynomials multiplying functions that are linear combinations of powers of r.

In a coordinate system moving at the speed of the colony, the radial and polar velocities are $u_r = -U[(c - x^{-3}) \cos \theta + A(x, \theta)]$ and $u_\theta = -U[-(d + x^{-3}) \sin \theta + B(x, \theta)]$, where $x = r/R$ and $A(x, \theta)$ and $B(x, \theta)$ are infinite sums of terms falling off with distance as x^{-2} and higher powers. The precise characteristic velocity whose dimensional scaling was shown in Eq. 6 is found to be $U = \pi f R / 8 \eta$. The parameters c and d distinguish between free-swimming colonies ($c = d = 1$) with no net force acting on them and colonies held in place by an anchoring force ($c = 1/x, d = 1/2x$).

To test this model, we measured the flow fields around colonies using methods described in detail elsewhere,4 building on earlier studies,19,20 and summarized in the Methods section. A least-squares fit of each data set was used to determine the velocity scale U for each, and then each data set was normalized to the maximum velocity. Pooling data on 10 colonies, Figure 3 shows this averaged velocity compared to the suitably normalized theoretical function; the two agree within the standard error of the measurements, validating the idea of surface shear stress supplied by the flagella.

We now examine in detail the nutrient uptake rate. Observe from Eq. 5 that since the flow field in the model has a characteristic velocity U that is proportional to the radius, the Peclet number is proportional to R^2. Since the Peclet number itself is dimensionless,
it can be expressed as the ratio of two radii in the form $Pe = (R/R_a)^2$ with

$$R_a = \sqrt{\frac{4\eta D}{\pi f}}.$$ \hspace{1cm} (7)

In addition to the bottleneck radius R_b, this “advection radius” R_a serves as a second characteristic length scale in the system, one not previously recognized. It is the length above which advection overtakes diffusion, i.e. $Pe > 1$. With the estimated parameters described above, we find $R_a \sim 10\mu m$, similar to the diameter of *Chlamydomonas*. The ratio $\Lambda \equiv R_b/R_a$ characterizes the onset of complexity in the Volvocales, and is in the range $5 - 10$. Note that R_a is comparable to the length of a flagellum, the “stirring rod,” certainly a curious coincidence.

To understand the role of the advection radius in the rate of molecular nutrient and waste exchange, we used the self-generated flow field calculated above as the velocity \vec{u} in the steady-state version of Eq. 4 to find numerically the concentration profile around a model colony. Figure 4a shows the normalized concentration field C/C_∞ near a swimming colony for a range of Peclet numbers. When $Pe \sim 1$, the concentration field is only slightly distorted from spherical symmetry, while for $Pe \gg 1$, a thin concentration boundary layer forms around the leading edge of the sphere; furthermore, a solute plume, analogous to the “tail” behind sedimenting marine snow21, extends to ever greater length. This plume of nutrient depletion or waste product accumulation is left behind a swimming colony. As an increasing Peclet number is associated with increasing radius, we may imagine the three frames in Fig. 4a as corresponding to organisms small in comparison to the advective radius, comparable in size, and then much larger. Since R_a is the measure of the size of the boundary layer, the boundary layer width R_a/R, in units of the colony radius, is proportional to $Pe^{-1/2}$. Computations are consistent with this scaling (Fig. 4b), where the boundary layer thickness is taken to be the distance over which the scaled concentration $C/C_\infty = 0.1$ in front of the colony. The absorption current I_a follows from Fick’s law as an integral, $I_a = D \int dS(\partial C/\partial r)$, over S, the colony surface. We approximate $\partial C/\partial r \simeq C_\infty/R_a$ at the surface, yielding

$$I_a \simeq \frac{4\pi R^2 D C_\infty}{R_a}.$$ \hspace{1cm} (8)

The right-hand-side of Eq. 8 may also be expressed as $4\pi D C_\infty R Pe^{1/2}$, the same power law found by Magar, et al.,17,18 whose velocity field included only the first few Legendre polynomial terms. The key new point here is that the quadratic dependence of the Peclet
number on radius (quite miraculously!) leads to a solute current that scales with the surface area, just as required. Figure 2b revisits the competition between pure diffusive current and metabolic needs first illustrated in Fig. 2a, but now presented on a log-log plot. It shows how the total molecular current crosses over from a diffusion-dominated linear behaviour for $R < R_a$ to advection-dominated quadratic scaling for $R > R_a$. This scaling is the same power as that for the metabolic needs. We therefore conclude that transport by the collective beating of flagella eliminates the diffusion-only inhibition of growth and thus facilitates the transition to multicellularity.

Discussion

Viewed from a different perspective, the flows we have described enhance the molecular or metabolite exchange rate per unit area of a colony. This advective contribution confers an advantage to increasing size, for it rises precipitously from the smallest organisms up to those whose size is several times the advection radius (Fig. 5). These results suggest that “a greater rate of nutrient acquisition per unit area” is one answer to the often-posed question regarding the advantages of increased size, particularly for colonial forms with only a few cells. Significantly, the levelling out of the exchange rate for even larger colonies implies size neutrality in that regime, i.e. that an increase of size in this range no longer affords any greater rate of nutrient acquisition per unit area. Perhaps this contributes to the polyphyletic origin of the Volvocales.

It should be emphasized that the details of the boundary conditions for nutrient uptake and/or waste removal can have a large effect on the degree to which advection can enhance these processes. It is also quite possible that the dynamics of waste removal are coupled to those of nutrient uptake. A full investigation of this awaits future work.

While we have focused on the central issue of metabolite exchange in the presence of strong fluid transport by flagella, the solute plumes (Fig. 4a), representing either depletion and waste, also provide spatially and temporally extended signals for the presence of a colony, perhaps significant for intercolony communication, as in sexual induction and quorum sensing, and for spatial patterning via chemotaxis. In the context of predation, a solute plume increases the probability of detection.

Methods

Colonies of *Volvox carteri* f. *nagariensis* harvested from synchronized populations grown in standard *Volvox* medium under controlled dark/light cycles (16 h light, 1000 foot-candles, 28°C/8 h dark, 26°C) are held fixed by micropipette aspiration (Fig. 2), viewed at 4x magnification on the stage of an inverted micro-
scope (Nikon Diaphot 200). Movies were acquired with an analog ccd camera (Sony SSC-M374, 480 × 640 pixels) and were typically composed of ∼ 1000 images taken at ∼ 30 frames/s. The resulting flow fields were smoothed by averaging over > 200 frames. For particle imaging velocimetry (PIV) studies the medium was seeded with microspheres (Molecular Probes, F8825 carboxylate modified, 1.0µm, Nile red), viewed using laser epifluorescence (80 mW, 532 nm) or darkfield illumination. Commercial PIV software (Dan-tec Dynamics, Skovlunde, Denmark) was used. Averaged velocity fields were used to obtain the tangential velocity component as a function of polar angle θ (Fig. 2), with typically 20 measurements between θ = 0 and θ = π. Apart from minor distortions due to the micropipette, symmetry between the two halves of the profile was observed; we combined those data and partitioned them into 10 bins.

We are grateful to H.C. Berg, T.E. Huxman, R.E. Michod, R. Stocker, and especially to A.M. Nedelcu for important discussions and to L. Cisneros, C. Dombrowski, and C. Smillie for experimental assistance. This work was supported in part by NSF grants DEB-0075296 (CAS), PHY-0551742 (MBS,SG,JOK,REG), and CMS-0093658 (TRP).

References

Figure 1. Volvocine green algae arranged according to typical colony radius R. The lineage ranges from the single-cell *Chlamydomonas reinhardtii* (A), to undifferentiated *Gonium pectorale* (B), *Eudorina elegans* (C), to the soma-differentiated *Pleodorina californica* (D), to the germ-soma differentiated *Volvox carteri* (E), *V. aureus* (F), and even larger (e.g. *V. gigas* with a radius of 1 mm). In species in which two cell types can be identified, the smaller are somatic cells and the larger are reproductive cells. Note that the number of cells in *Volvox* species ranges from 1,000 (e.g. *V. carteri*) to 50,000 (e.g. *V. barberi*).

Figure 2. Molecular currents (molecules/second) and requirements. (a) A schematic diagram illustrating the existence of the diffusive bottleneck R_b. When the metabolic demand current (red), which is quadratic in organism radius R, exceeds the diffusive current (blue), which is only linear in R, the metabolism is diffusion-limited. (b) Log-log plot showing how the advective current (green) circumvents the diffusive bottleneck for the choice $\Lambda = R_b/R_a = 3.3$. At radii greater than the advective radius R_a, the advective current grows quadratically with R, allowing metabolic needs to be satisfied for any arbitrary size.

Figure 3. Fluid flow near the surface of a colony. Inset shows geometry of the experiment. The organism is held fixed using a micropipette attached to the posterior region, in the vicinity of the germ cells/daughter colonies (G/D), away from the two stagnation points (SP) of the flow. The fluid flow generated by the colony is measured using particle imaging velocimetry (PIV). Comparison between theoretical (solid curve) and average experimental values (solid circles) of the tangential flow velocity near the organism’s surface is plotted as a function of polar angle θ. Measurements were made on ten different organisms. For each a least-squares fit to the theoretical velocity field was performed to determine the single unknown parameter, the maximum tangential velocity. These data were then pooled by normalizing each set to the fitted maximum velocity, ranging from $100 - 600 \mu m/s$ for the variously sized colonies measured.

Figure 4. Results from numerical calculations of spatial dependence of the concentration field using the theoretically obtained velocity field. (a) Concentration, normalized by C_{∞}, near a perfectly absorbing $[C(R) = 0]$ swimming spherical colony for various Peclet numbers, illustrating the development of a thin localized anterior boundary layer and long narrow posterior...
plumes at high swimming speeds. Colors represent the dimensionless concentration C/C_∞. The concentration fields near an immobilized colony are quantitatively very similar. (b) The relationship between boundary layer thickness and Peclet number. The thickness was determined from the computations as the distance from the front surface of the sphere to the point at which $C/C_\infty = 0.1$. When displayed as shown on a log-log plot (black line), the boundary layer thickness, divided by sphere radius R, is parallel to a line (dashed red) proportional to $Pe^{-1/2}$, indicating that it also varies as the $-1/2$ power at Peclet numbers greatly exceeding unity.

Figure 5. Difference between molecular flux (current/area) with advection, and without, plotted as a function of the colony radius R, in units of the advective radius R_a. Numerical results derived, using flagella-driven flow, show that beyond R_a the advective contribution overpowers pure diffusion. Beyond $\sim 100 \mu m = 10 R_a$, the approximate size where germ/soma differentiation occurs in the Volvocales, that difference saturates, indicating onset of size neutrality, in the sense that increasing size no longer increases the advective advantage in nutrient acquisition per unit area.