PHYSICS 515B

ELECTROMAGNETIC THEORY
 Prof. Fulvio Melia

Section V Problems Part II (due Monday, October 12)

Problem 1: (a) For the reaction $a b \rightarrow 12$, we may define the following Lorentz invariant variables

$$
\begin{aligned}
& s=\left(p_{a}+p_{b}\right)^{2} \\
& t=\left(p_{a}-p_{1}\right)^{2} \\
& u=\left(p_{a}-p_{2}\right)^{2}
\end{aligned}
$$

where $p^{2} \equiv p^{\alpha} p_{\alpha}$. Show that only two of these variables are independent by finding the constant (C) in the equation

$$
s+t+u=C
$$

(b) Relate t and u to $\cos \theta^{*}$, the angle in the CMS (center of momentum frame) between the incident particle a and the produced particle 1. Express your answer in terms of the kinematical function

$$
\lambda(x, y, z) \equiv(x-y-z)^{2}-4 y z
$$

Find the values of $\cos \theta^{*}$ which correspond to the maximum and minimum allowed values of t and u.

Problem 2: Consider the elastic collision of a projectile, of momentum \vec{p}_{1} and energy E_{1}, with a stationary target of mass m_{2}. Show that, for the scattering of m_{2} through the CMS angle θ^{*}, the final lab kinetic energy of the target particle is

$$
K_{2}=\frac{2 m_{2} p_{1}^{2} c^{4}}{E_{0}^{2}} \sin ^{2} \frac{\theta^{*}}{2}
$$

where $E_{0}^{2}=s c^{2}$ is the invariant energy squared.

Problem 3: It is sometimes useful to understand Lorentz transformations of quantities in terms of a piecemeal intuitive approach, as well as in terms of the elegant language of tensor transformations. For example, by means of a simple physical model we can derive the transformation of the electromagnetic fields \vec{E} and \vec{B} for the case of an initially pure electric field $\vec{B}=0$.
(a) Consider a charged capacitor with plates perpendicular to the z axis in its own rest frame K. Let σ be the surface charge density. Then it is known that the electric field inside is $E=4 \pi \sigma$, independent of the separation of the plates d and has a direction normal to the plates. Discuss the properties of the capacitor as seen in a reference frame K^{\prime} moving with velocity v along the z-axis relative to K (i.e., what is $\sigma^{\prime}, d^{\prime}$, etc.). Show that

$$
\vec{E}_{\|}^{\prime}=\vec{E}_{\|} .
$$

(b) Now consider the capacitor turned so that the plates are perpendicular to the y-axis. Again discuss the properties of the capacitor as seen in K^{\prime} and thereby show that

$$
\vec{E}_{\perp}^{\prime}=\gamma \vec{E}_{\perp}
$$

and

$$
\vec{B}_{\perp}^{\prime}=-\gamma \vec{\beta} \times \vec{E}_{\perp}
$$

Problem 4: Jackson 11.16.

Problem 5: Consider the motion of a point charge in crossed uniform fields $\vec{E} \perp \vec{B}$.
(a) Show that the fields in the frame drifting with velocity $\vec{v}=c \vec{E} \times \vec{B} / B^{2}$ are

$$
\begin{gathered}
\vec{E}^{\prime}=0 \\
\vec{B}^{\prime}=\vec{B}\left(1-\frac{E^{2}}{B^{2}}\right)^{1 / 2}
\end{gathered}
$$

What is the significance of this frame?
(b) Show that in this drifting frame, the particle undergoes circular motion with angular frequency

$$
\omega^{\prime}=\frac{u_{\perp}^{\prime}}{R^{\prime}},
$$

where R^{\prime} is the radius of the circle and u_{\perp}^{\prime} is the component perpendicular to the magnetic field of the particle's velocity relative to the drifting frame. Find R^{\prime} and ω^{\prime}.
(c) Discuss the relativistic distortions to the non-relativisitc cycloidal motion, for the special case of a particle starting from rest in the laboratory, with particular attention to the circulation radius (and therefore the cycle length).

