PHYSICS 515B

ELECTROMAGNETIC THEORY
 Prof. Fulvio Melia

Section VII Problems (due Wednesday, December 2)

Problem 1: The vector potential due to a source $\vec{J}(\vec{x}, t)$ may be written

$$
\vec{A}(\vec{x}, t)=\frac{1}{c} \int d^{3} x^{\prime} \int d t^{\prime} \frac{\vec{J}\left(\vec{x}^{\prime}, t^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} \delta\left(t^{\prime}-t+\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}\right) .
$$

Assume that the source is contained within a region of linear size $\sim L$. Show that at field points $|\vec{x}| \gg L$, the Fourier transform of \vec{A} may be expanded as

$$
\vec{A}_{\omega}(\vec{x})=\frac{e^{i k|\vec{x}|}}{c|\vec{x}|} \Sigma_{n=0}^{\infty} \frac{1}{n!} \int \vec{J}_{\omega}\left(\vec{x}^{\prime}\right)\left(-i k \frac{\vec{x} \cdot \vec{x}^{\prime}}{|\vec{x}|}\right)^{n} d^{3} x^{\prime},
$$

where $\vec{J}_{\omega}(\vec{x})$ is the corresponding Fourier Transform of $\vec{J}(\vec{x}, t)$, and $k \equiv \omega / c$. Assume $k L \ll 1$.

Problem 2: Consider a charge q moving around a circle of radius r_{0} at frequency ω_{0}. By consideration of the current density and its Fourier Transform, show that the Fourier Transform of the vector potential $\vec{A}_{\omega}(\vec{x})$ is nonzero only at $\omega=\omega_{0}$ in the dipole approximation, nonzero only at $\omega=2 \omega_{0}$ in the quadrupole approximation and so on. You may want to use the results of Problem 1 above-but be careful in your choice of multipole components!

Problem 3: An almost spherical surface, defined by

$$
R(\theta)=R_{0}\left[1+\beta P_{2}(\cos \theta)\right],
$$

has inside of it a uniform volume distribution of charge totaling Q. The small parameter β varies harmonically in time at frequency ω. This corresponds to surface waves on a sphere. Keepingonly lowest-order terms in β and making the long-wavelength approximation, calculate the nonvanishing multipole moments, the angular distribution of radiation, and the total power radiated.

Problem 4: Jackson 13.5

