PHYSICS 515B

ELECTROMAGNETIC THEORY
 Prof. Fulvio Melia

Section VIII Problems (due Wednesday, December 9)

Problem 1: In lecture, we found that the potential from a point charge could be written

$$
A^{\mu}(x)=2 q \int d^{4} x^{\prime} \theta\left(x_{0}-x_{0}^{\prime}\right) \delta\left[\left(x-x^{\prime}\right)^{2}\right] \int d \tau U^{\mu}(\tau) \delta^{(4)}\left(x^{\prime}-x_{q}(\tau)\right)
$$

Show that in terms of the scalar potential Φ and vector potential \vec{A}, this reduces to

$$
\Phi(\vec{x}, t)=\left[\frac{q}{\left.(1-\vec{\beta} \cdot \hat{n})\left|\vec{x}-\vec{x}_{q}\right|\right)}\right]_{r e t},
$$

and

$$
\vec{A}(\vec{x}, t)=\left[\frac{q \vec{\beta}}{(1-\vec{\beta} \cdot \hat{n})\left|\vec{x}-\vec{x}_{q}\right|}\right]_{r e t}
$$

where "ret" means the quantity in the brackets is to be evaluated at the retared time τ_{0}, such that

$$
\left(x_{0}-x_{q}\left(\tau_{0}\right)\right)^{2}=\left|\vec{x}-\vec{x}_{q}\left(\tau_{0}\right)\right|^{2}
$$

Problem 2: In this problem, we will use relativistic transformations to find the radiation emitted by a particle moving at relativistic speeds.
(a) Show that the total emitted power is a Lorentz invariant for any emitter that emits with front-back symmetry in its instantaneous rest frame.
(b) Show that the covariant generalization of the Larmor formula is

$$
P=\frac{2 q^{2}}{3 c^{3}} a^{\alpha} a_{\alpha}
$$

where $a^{\alpha} \equiv d U^{\alpha} / d \tau$ and U^{α} is the 4-velocity. Be careful about which frame you're in! (c) Show that in terms of the 3 -vector acceleration $d^{2} \vec{x} / d t^{2}$, this power is

$$
P=\frac{2 q^{2}}{3 c^{3}} \gamma^{4}\left(a_{\perp}^{2}+\gamma^{2} a_{\|}^{2}\right),
$$

where $a_{\|}$and a_{\perp} are the components of acceleration parallel and perpendicular to the direction of v.

Problem 3: Suppose a particle of mass m and charge q is moving (relativistically) in a uniform magnetic field \vec{B}.
(a) Show that the total emitted power may be written

$$
P=2 \sigma_{T} c \beta^{2} \gamma^{2} U_{B}
$$

where σ_{T} is the Thomson cross section, $\beta=v / c$, and U_{B} is the magnetic energy density. (b) Assuming an observer sees the radiation coming only within the cone of half-angle $1 / \gamma$ about the velocity vector, show that the duration of the observed pulse once every gyration period is

$$
\Delta t \approx \frac{2}{\gamma \omega_{B} \sin \alpha}\left(1-\frac{v}{c}\right)
$$

where ω_{B} is the angular velocity of gyration, and α is the pitch angle, i.e., the angle between the velocity vector and the magnetic field.

Problem 4: A particle is accelerated by a force having components $F_{\|}$and F_{\perp} with respect to the particle's velocity. Show that the radiated power is

$$
P=\left(\frac{2 q^{2}}{3 m^{2} c^{3}}\right)\left(F_{\|}^{2}+\gamma^{2} F_{\perp}^{2}\right) .
$$

Thus, the perpendicular component has more effect in producing radiation than the parallel component by a factor γ^{2}.

Problem 5: An object emits a blob of material at speed v at an angle θ to the line-of-sight of a distant observer.
(a) Show that the apparent transverse velocity inferred by the observer is

$$
v_{a p p}=\frac{v \sin \theta}{1-(v / c) \cos \theta}
$$

(b) Show that $v_{\text {app }}$ can exceed c; find the angle for which $v_{\text {app }}$ is maximum, and show that this maximum is $v_{\max }=\gamma v$.

