Phys 332 Electricity and Magnetism II Prof. Fulvio Melia Homework 3

Problem 1: By explicit differentiation, show that the functions f_1 , f_2 , and f_3 satisfy the wave equation, but that f_4 and f_5 do not.

$$f_{1}(z,t) = Ae^{-b(z-vt)^{2}} \qquad f_{2}(z,t) = A\sin[b(z-vt)]$$

$$f_{3}(z,t) = \frac{A}{b(z-vt)^{2}+1} \qquad f_{4}(z,t) = Ae^{-b(bz^{2}+vt)}$$

$$f_{5}(z,t) = A\sin(bz)\cos(bvt)^{3}$$

Problem 2: Show that the standing wave $f(z, t) = A \sin(kz) \cos(kvt)$ satisfies the wave equation and express it as the sum of a wave traveling to the left and a wave traveling to the right.

Problem 3: Wangsness 24-5.

Problem 4: Wangsness 24-12.

Problem 5: Wangsness 24-13.

Problem 6:

(a) Suppose you embed some free charge in a piece of glass. About how long would it take for the charge to flow to the surface? Assume that $n_{\text{glass}} = 1.5$ and that $\sigma_{\text{glass}} \approx 10^{-12} \,\Omega^{-1} \,\mathrm{m}^{-1}$.

(b) Silver is an excellent conductor, but it's expensive. Suppose you were designing a microwave experiment to operate at a frequency of 10^{10} Hz. How thick would you make the silver coatings? Use $\sigma_{Ag} = 6.29 \times 10^7 \Omega^{-1} m^{-1}$.

(c) Find the wavelength and propagation speed in copper for radio waves at 1 MHz. Compare your results with the corresponding values in air (or vacuum). Use $\sigma_{Cu} = 5.95 \times 10^7 \ \Omega^{-1} \ m^{-1}$.

Problem 7:

(a) Show that the skin depth in a poor conductor ($\sigma \ll \omega \epsilon$) is $2/\sigma \sqrt{\epsilon/\mu}$ (independent of frequency). Find the skin depth (in meters) for (pure) water. Use $\epsilon = 80.1\epsilon_0$, $\mu = \mu_0$ and $\sigma = 4 \times 10^{-6} \Omega^{-1} m^{-1}$.

(b) Show that the skin depth in a good conductor ($\sigma \gg \omega \epsilon$) is $\lambda/2\pi$ (where λ is the wavelength in the conductor). Find the skin depth (in nanometers) for a typical metal ($\sigma \approx 10^7 \ \Omega^{-1} \ m^{-1}$) in the visible range ($\omega \approx 10^{15} \ rad/s$), assuming $\epsilon \approx \epsilon_0$ and $\mu \approx \mu_0$). Why are metals opaque?

(c) SHow that in a good conductor the magnetic field lags behind the electric field by 45° and find the ratio of their amplitudes. For a numerical example, use the 'typical metal' in part (b).

Problem 8: Calculate the (time-averaged) energy density of an electromagnetic plane wave in a conducting medium. Show that the magnetic contribution always dominates. You may start from

$$\mathbf{E}(z,t) = E_0 e^{-\beta z} \cos(\alpha z - \omega t + \delta_E) \hat{x}$$
$$\mathbf{B}(z,t) = B_0 e^{-\beta z} \cos(\alpha z - \omega t + \delta_E + \Omega) \hat{y}$$

Recall that $\mathbf{B} = (|\mathbf{k}|/\omega)\hat{k} \times \mathbf{E}$ and you will certainly need the expressions for α and β from class.

Problem 9: Find all the elements of the Maxwell stress tensor for a monochromatic plane wave traveling through the vacuum in the *z*-direction and linearly polarized in the *x*-direction:

$$\mathbf{E}(z,t) = E_0 \cos(kz - \omega t + \delta)\hat{x}$$
$$\mathbf{B}(z,t) = \frac{1}{c}E_0 \cos(kz - \omega t + \delta)\hat{y}$$

Does your answer make sense? Remember that T_{ij} represents the momentum flux density. How si the momentum flux density related to the energy density in this case?

Problem 10: The function

$$\mathbf{f}(z,t) = A e^{i(kz-\omega t)} \hat{n} \tag{1}$$

describes the most general linearly polarized wave on a string. Linear (or 'plane') polarization results from the combination of horizontally and vertically polarized waves of the same phase:

$$\mathbf{f}(z,t) = A\cos\theta e^{i(kz-\omega t)}\hat{x} + A\sin\theta e^{i(kz-\omega t)}\hat{y}.$$
(2)

If the two components are of equal amplitude, but out of phase by 90°, the result is a circularly polarized wave. In that case,

$$\mathbf{f}(z,t) = Ae^{i(kz-\omega t)}\hat{x} + Ae^{i(kz-\omega t+\pi/2)}\hat{y} .$$
(3)

In each equation above, you may assume that A is real and that the real part of the expression is what actually matters.

(a) At a fixed point *z*, show that the string moves in a circle about the *z*-axis. Does it rotate clockwise or counterclockwise as you look down the axis towards the origin? How would you construct a wave rotating the other way? (In optics, the clockwise case is called right circular polarization and the counterclockwise case left circular polarization.)

(b) Sketch the string at time t = 0.

(c) How would you shake the string in order to produce a circularly polarized wave?