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Phys 332
Electricity and Magnetism II

Prof. Fulvio Melia
Homework 3

Problem 1: By explicit differentiation, show that the functions f1, f2, and f3 satisfy the wave equation, but that f4 and f5 do not.

f1(z, t) = Ae−b(z−vt)2
f2(z, t) = A sin[b(z − vt)]

f3(z, t) =
A

b(z − vt)2 + 1
f4(z, t) = Ae−b(bz2+vt)

f5(z, t) = A sin(bz) cos(bvt)3

Problem 2: Show that the standing wave f (z, t) = A sin(kz) cos(kvt) satisfies the wave equation and express it as the sum of a
wave traveling to the left and a wave traveling to the right.

Problem 3: Wangsness 24-5.

Problem 4: Wangsness 24-12.

Problem 5: Wangsness 24-13.

Problem 6:

(a) Suppose you embed some free charge in a piece of glass. About how long would it take for the charge to flow to the surface?
Assume that nglass = 1.5 and that σglass ≈ 10−12 Ω−1 m−1.

(b) Silver is an excellent conductor, but it’s expensive. Suppose you were designing a microwave experiment to operate at a
frequency of 1010 Hz. How thick would you make the silver coatings? Use σAg = 6.29 × 107 Ω−1 m−1.

(c) Find the wavelength and propagation speed in copper for radio waves at 1 MHz. Compare your results with the corresponding
values in air (or vacuum). Use σCu = 5.95 × 107 Ω−1 m−1.

Problem 7:

(a) Show that the skin depth in a poor conductor (σ � ωε) is 2/σ
√
ε/µ (independent of frequency). Find the skin depth (in

meters) for (pure) water. Use ε = 80.1ε0, µ = µ0 and σ = 4 × 10−6 Ω−1 m−1.

(b) Show that the skin depth in a good conductor (σ � ωε) is λ/2π (where λ is the wavelength in the conductor). Find the skin
depth (in nanometers) for a typical metal (σ ≈ 107 Ω−1 m−1) in the visible range (ω ≈ 1015 rad/s), assuming ε ≈ ε0 and µ ≈ µ0).
Why are metals opaque?

(c) SHow that in a good conductor the magnetic field lags behind the electric field by 45◦ and find the ratio of their amplitudes.
For a numerical example, use the ‘typical metal’ in part (b).

Problem 8: Calculate the (time-averaged) energy density of an electromagnetic plane wave in a conducting medium. Show that
the magnetic contribution always dominates. You may start from

E(z, t) = E0e−βz cos(αz − ωt + δE)x̂

B(z, t) = B0e−βz cos(αz − ωt + δE + Ω)ŷ

Recall that B = (|k|/ω)k̂ × E and you will certainly need the expressions for α and β from class.
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Problem 9: Find all the elements of the Maxwell stress tensor for a monochromatic plane wave traveling through the vacuum in
the z-direction and linearly polarized in the x-direction:

E(z, t) = E0 cos(kz − ωt + δ)x̂

B(z, t) =
1
c

E0 cos(kz − ωt + δ)ŷ

Does your answer make sense? Remember that Ti j represents the momentum flux density. How si the momentum flux density
related to the energy density in this case?

Problem 10: The function
f(z, t) = Aei(kz−ωt)n̂ (1)

describes the most general linearly polarized wave on a string. Linear (or ‘plane’) polarization results from the combination of
horizontally and vertically polarized waves of the same phase:

f(z, t) = A cos θei(kz−ωt) x̂ + A sin θei(kz−ωt)ŷ . (2)

If the two components are of equal amplitude, but out of phase by 90◦, the result is a circularly polarized wave. In that case,

f(z, t) = Aei(kz−ωt) x̂ + Aei(kz−ωt+π/2)ŷ . (3)

In each equation above, you may assume that A is real and that the real part of the expression is what actually matters.

(a) At a fixed point z, show that the string moves in a circle about the z-axis. Does it rotate clockwise or counterclockwise as you
look down the axis towards the origin? How would you construct a wave rotating the other way? (In optics, the clockwise case
is called right circular polarization and the counterclockwise case left circular polarization.)

(b) Sketch the string at time t = 0.

(c) How would you shake the string in order to produce a circularly polarized wave?


