Phys 332

Electricity and Magnetism II

Prof. Fulvio Melia
Homework 3

Problem 1: By explicit differentiation, show that the functions f_{1}, f_{2}, and f_{3} satisfy the wave equation, but that f_{4} and f_{5} do not.

$$
\begin{array}{cr}
f_{1}(z, t)=A e^{-b(z-v t)^{2}} & f_{2}(z, t)=A \sin [b(z-v t)] \\
f_{3}(z, t)=\frac{A}{b(z-v t)^{2}+1} & f_{4}(z, t)=A e^{-b\left(b z^{2}+v t\right)} \\
f_{5}(z, t)=A \sin (b z) \cos (b v t)^{3} &
\end{array}
$$

Problem 2: Show that the standing wave $f(z, t)=A \sin (k z) \cos (k v t)$ satisfies the wave equation and express it as the sum of a wave traveling to the left and a wave traveling to the right.

Problem 3: Wangsness 24-5.

Problem 4: Wangsness 24-12.

Problem 5: Wangsness 24-13.

Problem 6:

(a) Suppose you embed some free charge in a piece of glass. About how long would it take for the charge to flow to the surface? Assume that $n_{\text {glass }}=1.5$ and that $\sigma_{\text {glass }} \approx 10^{-12} \Omega^{-1} \mathrm{~m}^{-1}$.
(b) Silver is an excellent conductor, but it's expensive. Suppose you were designing a microwave experiment to operate at a frequency of $10^{10} \mathrm{~Hz}$. How thick would you make the silver coatings? Use $\sigma_{\mathrm{Ag}}=6.29 \times 10^{7} \Omega^{-1} \mathrm{~m}^{-1}$.
(c) Find the wavelength and propagation speed in copper for radio waves at 1 MHz . Compare your results with the corresponding values in air (or vacuum). Use $\sigma_{\mathrm{Cu}}=5.95 \times 10^{7} \Omega^{-1} \mathrm{~m}^{-1}$.

Problem 7:

(a) Show that the skin depth in a poor conductor $(\sigma \ll \omega \epsilon)$ is $2 / \sigma \sqrt{\epsilon / \mu}$ (independent of frequency). Find the skin depth (in meters) for (pure) water. Use $\epsilon=80.1 \epsilon_{0}, \mu=\mu_{0}$ and $\sigma=4 \times 10^{-6} \Omega^{-1} \mathrm{~m}^{-1}$.
(b) Show that the skin depth in a good conductor $(\sigma \gg \omega)$ is $\lambda / 2 \pi$ (where λ is the wavelength in the conductor). Find the skin depth (in nanometers) for a typical metal ($\sigma \approx 10^{7} \Omega^{-1} \mathrm{~m}^{-1}$) in the visible range ($\omega \approx 10^{15} \mathrm{rad} / \mathrm{s}$), assuming $\epsilon \approx \epsilon_{0}$ and $\mu \approx \mu_{0}$). Why are metals opaque?
(c) SHow that in a good conductor the magnetic field lags behind the electric field by 45° and find the ratio of their amplitudes. For a numerical example, use the 'typical metal' in part (b).

Problem 8: Calculate the (time-averaged) energy density of an electromagnetic plane wave in a conducting medium. Show that the magnetic contribution always dominates. You may start from

$$
\begin{aligned}
& \mathbf{E}(z, t)=E_{0} e^{-\beta z} \cos \left(\alpha z-\omega t+\delta_{E}\right) \hat{x} \\
& \mathbf{B}(z, t)=B_{0} e^{-\beta z} \cos \left(\alpha z-\omega t+\delta_{E}+\Omega\right) \hat{y}
\end{aligned}
$$

Recall that $\mathbf{B}=(|\mathbf{k}| / \omega) \hat{k} \times \mathbf{E}$ and you will certainly need the expressions for α and β from class.

Problem 9: Find all the elements of the Maxwell stress tensor for a monochromatic plane wave traveling through the vacuum in the z-direction and linearly polarized in the x-direction:

$$
\begin{array}{r}
\mathbf{E}(z, t)=E_{0} \cos (k z-\omega t+\delta) \hat{x} \\
\mathbf{B}(z, t)=\frac{1}{c} E_{0} \cos (k z-\omega t+\delta) \hat{y}
\end{array}
$$

Does your answer make sense? Remember that $T_{i j}$ represents the momentum flux density. How si the momentum flux density related to the energy density in this case?

Problem 10: The function

$$
\begin{equation*}
\mathbf{f}(z, t)=A e^{i(k z-\omega t)} \hat{n} \tag{1}
\end{equation*}
$$

describes the most general linearly polarized wave on a string. Linear (or 'plane') polarization results from the combination of horizontally and vertically polarized waves of the same phase:

$$
\begin{equation*}
\mathbf{f}(z, t)=A \cos \theta e^{i(k z-\omega t)} \hat{x}+A \sin \theta e^{i(k z-\omega t)} \hat{y} . \tag{2}
\end{equation*}
$$

If the two components are of equal amplitude, but out of phase by 90°, the result is a circularly polarized wave. In that case,

$$
\begin{equation*}
\mathbf{f}(z, t)=A e^{i(k z-\omega t)} \hat{x}+A e^{i(k z-\omega t+\pi / 2)} \hat{y} . \tag{3}
\end{equation*}
$$

In each equation above, you may assume that A is real and that the real part of the expression is what actually matters.
(a) At a fixed point z, show that the string moves in a circle about the z-axis. Does it rotate clockwise or counterclockwise as you look down the axis towards the origin? How would you construct a wave rotating the other way? (In optics, the clockwise case is called right circular polarization and the counterclockwise case left circular polarization.)
(b) Sketch the string at time $t=0$.
(c) How would you shake the string in order to produce a circularly polarized wave?

