PHYSICS 515-A Standard Problems Spring 2021

These are not to be handed in, but try to complete them before the end of the semester

[1] **Electrostatics** A box with sides of length a (along \hat{x}), b (along \hat{y}), and c (along \hat{z}), has potential $\Phi(x, y, z) = 0$ on all sides except the side at z = c, where Φ is a constant ($\Phi = V$). Find the electric potential everywhere inside the box.

Answer: $\Phi(x, y, z) = \sum_{n,m=1}^{\infty} A_{nm} \sin(\alpha_n x) \sin(\beta_m y) \sinh(\gamma_{nm} z)$, where $A_{nm} = 4[ab \sinh(\gamma_{nm} c)]^{-1} \int_0^a dx \int_0^b dy V \sin(n\pi x/a) \sin(m\pi y/b)$.

- [2] **Electrostatics** A hollow conducting sphere (radius a) is divided into equal parts by a thin insulating ring, and the two halves are maintained at potentials V_0 and 0.
 - (a) What is the Green function?
 - (b) Derive an integral expression for the potential *outside* the sphere.
 - (c) Show that along the z-axis, the potential is

$$V(r,\theta=0) = \frac{V_0}{2r} \left[r + a - \frac{(r^2 - a^2)}{(r^2 + a^2)^{1/2}} \right]$$

[3] **Magnetostatics** A cylindrical conductor of radius a has a hole of radius b bored parallel to, and centered a distance d from, the cylinder axis (d + b < a). The current density, J, is uniform throughout the remaining metal of the cylinder, and parallel to the cylinder's axis. Find the magnitude and direction of the magnetic induction **B** anywhere inside the hole.

Answer: $\mathbf{B} = (2\pi/c)Jd\hat{y}$, where \hat{y} is an axis perpendicular to the axis of the cylinder and perpendicular to the line connecting the center of the cylinder and the center of the hole.

- [4] **Magnetostatics** Consider a thin spherical shell of dielectric which has a radius R and rotates with an angular velocity ω about its z-axis. A constant surface charge of density σ is placed uniformly on the sphere, producing a uniform magnetic field that is proportional to σ and ω .
 - (a) Find the magnetic dipole moment and the magnetization of the sphere.

(b) Find the magnetic field, and magnetic induction, inside and outside the sphere.

(c) A constant torque N is applied parallel to ω . How long does it take for the shell to stop rotating?

Answer: time = $16\pi^2 \sigma^2 \omega R^5 / N$.

[5] Waves Consider electromagnetic waves in free space of the form

$$\mathbf{E}(x, y, z, t) = \mathbf{E}_{\mathbf{0}}(x, y) e^{i(kz - \omega t)} ,$$
$$\mathbf{B}(x, y, z, t) = \mathbf{B}_{\mathbf{0}}(x, y) e^{i(kz - \omega t)} ,$$

where \mathbf{E}_0 and \mathbf{B}_0 are in the *xy*-plane.

(a) Find the relation between k and ω , as well as the relation between \mathbf{E}_0 and \mathbf{B}_0 . Show that \mathbf{E}_0 and \mathbf{B}_0 satisfy the relations for electrostatics and magnetostatics in free space.

Answer: $k = \omega/c$, \mathbf{E}_0 , \mathbf{B}_0 , and \hat{z} are mutually perpendicular, and $\vec{\nabla} \cdot \mathbf{E}_0$, $\vec{\nabla} \cdot \mathbf{B}_0$.

(b) What are the boundary conditions for \mathbf{E} and \mathbf{B} on the surface of a perfect conductor?

Answer: $\hat{n} \times \mathbf{E} = 0$, $\hat{n} \cdot \mathbf{D} = 0$, $\hat{n} \times \mathbf{H} = \vec{K}$, and $\hat{n} \cdot \mathbf{B} = 0$, where \vec{K} is the linear current per unit width on the surface.

(c) Consider a wave of this type propagating along a coaxial transmission line. Assume the entral cylinder and the outher sheath are perfect conductors. Sketch the electromagnetic field lines for a particular cross section. Indicate the signs of the charges and the directions of the currents in the conductors.

Answer: For any given cross section, \mathbf{E}_0 is radial because of the symmetry. Similarly, \mathbf{B}_0 is circular. The charges are positive on the inner conductor and negative on the outer. The current is along $+\hat{z}$ on the inner conductor and along $-\hat{z}$ on the outer.

(d) Derive expressions for **E** and **B** in the transmission line in terms of the charge per unit length λ and the current I in the central conductor.

Answer: $\mathbf{E} = \lambda \hat{r}/r$, and $\mathbf{B} = I\hat{\theta}/r$.

[6] **Reflection and Transmission** A plane-polarized electromagnetic wave of frequency ω and amplitude E_i is incident at an angle θ_i to the normal of the interface between two simple (linear) dielectrics of refractive indices n_1 and n_2 . The incident electric field lies in the x - z plane. (a) Write down appropriate expressions for the incident, reflected, and transmitted electric and magnetic fields in terms of the propagation vectors $\mathbf{k_i}$, $\mathbf{k_r}$, and $\mathbf{k_t}$.

(b) Write down the appropriate boundary conditions for the tangential componets of the electric and magnetic fields at the interface of the dielectric.

- (c) Explain why the frequencies of all the waves must be the same.
- (d) Show that the wave vectors $\mathbf{k_i}$, $\mathbf{k_r}$, and $\mathbf{k_t}$ must lie in the same x z plane.
- (e) Prove that $\theta_i = \theta_r$ and that $n_1 \sin \theta_i = n_2 \sin \theta_t$.
- (f) At what incident angle θ_i does the amplitude of the reflected wave vanish?
- [7] **Radiation** This one is a little long for a final exam question, but it has many of the elements you would need in such a problem if it were to appear on the final. An infinitesimally small electric dipole $p = p_0 e^{-i\omega t}$ is placed at the origin of a spherical co-ordinate system (r, θ, ϕ) . Given

$$\mathbf{A}(r) = -i\omega \, p \, \frac{e^{ikr}}{r} \, \hat{z} \; ,$$

- (a) calculate the magnetic and electric field components.
- (b) Show that the Poynting vector is given by

$$\mathbf{S} = \frac{k^4 c p_0^2 \sin^2 \theta}{r^2} \,.$$

(c) Show that the radiative power is given by

$$P = (8\pi/3)k^4 cp_0^2$$
.

[8] **Radiation** Consider an oscillating linear electric quadrupole, composed of a charge -2Q at z = 0, a charge +Q at z = s, and a charge +Q at z = -s. Each charge is oscillating according to $Q(t) = Q_0 e^{-i\omega t}$.

(a) Calculate the electric and magnetic field intensities of the quadrupole in the radiation field $(r >> \lambda >> s)$.

Answer:

$$\mathbf{E}(\mathbf{x},t) = -i\frac{Qs^2}{r} \left(\frac{\omega}{c}\right)^3 \cos\theta \sin\theta e^{i\omega(t-r/c)} \hat{\theta} ,$$
$$\mathbf{B}(\mathbf{x},t) = -i\frac{Qs^2}{r} \left(\frac{\omega}{c}\right)^3 \cos\theta \sin\theta e^{i\omega(t-r/c)} \hat{\phi} .$$

(b) Calculate the time-averaged Poynting vector in the same limit. Answer:

$$\langle \mathbf{S}(\mathbf{x}) \rangle = \frac{c}{8\pi} \frac{Q^2 s^4}{r^2} \left(\frac{\omega}{c}\right)^6 \cos^2\theta \sin^2\theta \hat{r} .$$

(c) Calculate the total radiated power in the same limit.

Answer:

$$P = \frac{cQ^2s^4}{15} \left(\frac{\omega}{c}\right)^6 \; .$$