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An analytical, non-perturbative description of a strongly
interacting hadron gas is presented. Its main features are:
the formulation is relativistically covariant, hadrons have
finite extensions which are treated 4 1a Van der Waals and
their strong interactions are simulated by a hadronic mass
spectrum generated by a bootstrap equation under the con-
straints of baryon number conservation. The system exhibits
: a singularity, which has the typical features of a phase

f transition gas - liquid, but which we interpret here as the
: transition into a quark-gluon plasma phase, which, however,
cannat be described by this medel. (In Part 2, a quark-gluon
? plasma modell will be sketched and matched to the baotstrap
model. The joint models are then applied to heavy ion col-

lisions).

1. INTRODUCTION

We wish to describe the thermodynamic properties of a hadron gas with its strong
interactions leading to a phase transition - the "dissolution" of individual
hadrons in a weakly interacting quark-gluon plasma. This new phase seems to be the
mast obvious continuation of the known hadron phase.

In Part 1 we present the hadronic aspectsl), in Part 2 below the quark-gluon
aspects and the nature of the transition between these two, as well as some pheno-
menological predictions for relativistic heavy ion collisionsz).
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For the description of the strongly interacting hadron gas we require:
- Lorentz covariant formulation of thermodynamics;

- conservatian éf the total four momentum of the system;

- conservation of the baryon number;

- kinetic and "chemical" equilibrium between all constituents (pions, nucleons and
antinucleons as well as all their resonances and bound states);

- a finite "natural volume" for each constituent to be used 3 la Van der Waals.
This natural volume is the volume due to internal dynamics in the absence of
external forces.

2. NOTATION

fi=c=k= 1, mass units MeV, GeV; energy, iaverse temperature and volume are
generalized to four vectorsa):

u

= (0%B) = mtut =2

|
¥
™
i3
u

(8%,8) = % v, vuvu =1 (1)
VR (VO,V) =V wh wuw" =1

where u”, V¥, w" are the four velocities of the total mass, of the thermometer and
of the volume, respectively. Usually u* = v¥ = w¥,

3. THERMODYNAMICS

The usual level density of a system enclosed in a volume V and having energy £ and
baryon number b becomes in covariant notational
o{E,V,b)dE > o(p,V,b)d"p (2)
Given o(p,V,b), we can calculate the grand canonical partition function:
u

@ —B p
Z(T.V,0): - £ a2 [o(p.V,b)e ¥ dup 3)
b=~

-

where ) is the fugacity for baryon conservation.

In the present model, four momentum and baryon number are the only conserved
quantities; further conservation laws, including non-Abelian 0nes4), can be in-
carporated.

From 2nZ a1l relevant thermodynamic quantities can be found as usual by different-
jation. Thus the theoretical problem is to find o(p,V,b)."

T T o vadhen T <
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4. THE DENSITY OF STATES o(p.V.b)
We postulate the following ansatz:

- N N N 28 p¥ o .
a{psV,b) = £ Jé*(p- = p:) S (b- £ b.) x Hﬁﬂ)—ﬂp- »b.)dp.  (4)
n=o is1 Uepgd & amr 0 aalE LRI
In this expression the complete set of contributing states is subdivided into any
number N of subsets corresponding to any partition of the total four momentum p
and the total baryon number b. These subsets - the constituents, called clusters
from now on - have an internal density of states T(p?,b) (mass spectrum). The
following natural properties are incorporated in the above density of states:

i) four momentum conservation [8*(p - Ip,)];
i§) baryon number conservation IGK(b - Zbi)];

iii) unlimited (as far as is allowed by i) and ii) creation and absorption of
particles (sum gver N);

iv) kinetic and "chemical" equilibrium between all possible constituents (pions,
nucleons and their clusters) which are counted in the mass spectrum t(p2,b);

v) a Van der Waals treatment of the volume: & = V - EVi is the "available
volume" after subtracting from V the natural volumes of the constituents
{clusters).

Comments:

- points iii) and iv) represent the interaction: if T(m?,b) contains all
participating elementary particles (here w,N) and all their resonances and
bound states, then the interaction is perfectly taken into account (as far
as thermodynamics goes and apart from long-range and short-range, strongly
repulsive forces). For details on this crucial point, see Refs. 5 - B).

- paint v) says that the volume is reduced @ 1a Van der Waals; the usual factor
4 in front of ):Vi is left out, since our particles, the clusters, are
considered incompressible but deformable and having natural cluster volumes
Vi. which, in a summary way, represent shart-range repulsive forces. If V
is given, then N

8=V~ % Vi

i=1

will be a function of V and N. We shall instead consider A as the free para-

meter and then the external, total volume is a function of A and N, so that

in the grand canonical ensemble it will become an expectation value< V >.

- equation (4) states: the density of states of extended particles in the
volume V is identical to that of point particles in the available volume A.
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- the integration measure reduces in the rest frame of A to the usual one:
2A pu 8
(2") 5y T(p?,b)d*p » T__TT T(m?,b)dm?d®p (5)

- as we shall see that t(m?,b) grows exponentially, Bose-Einstein and Fermi-
Dirac statistics can be neglected (for temperatures 2 50 Mev).

5. BACK TO THERMODYNAMICS
As explained, Eq. (4) implies:
a(p, V ,b) = apg(Ps8sb) (6)

where the subscript pt denotes "point particles”. The double Laplace transform (3)
of this density obeys therefore:

TV>1) = 2,(Tua0) (7)

which permits us to calculate everything for fictitious point particles in A and
afterwards obtain the correct quantities by eliminating A in favour< V >.

Assume now t(p?,b) and therefore o(p,V,b) to be known. Then

Z . (T,A.\) = ; 1 [ &%(p- g p:) e'B'Pd“p X
pt N=oN" i=1 |

© b (b- N N 2A'p1 2 .
X £ A X ¢ Zh, ) 1| ©(p.%,b.)d"p. 7
beme {bi} K =1 1jey ()T U P4y )

The & functions permit us to do the d"p integration and A summation; the ntegrand
thereafter splits into N independent, identical integrals and the sum yields an
exponential function; thus, taking its logarithm:

Ln 2,(T.8,2)

In Z(Tg V>,)) =: Zl(T,A,).)

2A p¥ g pH
21(T,A,0): = j-rgﬂyy (p?,A) e T d*p
where (8)
wp20) ;= 1 AP(p?.b)

b=~

A11 the interaction is contained in t(p?,A). If it were a simple Go(p2 -m?), Z,
would be the usual "one-particle partition function" of the ideal gas; here it is
the "one~cluster partition function".

Note that the simple result (8) is due to keeping A fixed as external parameter;

(s iy

—e ST
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there is always room for more particles, the volume V grows with N and N can go to

=; had we instead considered V as external parameter, the sum over N would have had
to break off when the box V was full and we would not have obtained an exponential

function.

Now we face two questions:
- what is 1(p?,))?
- what is the relation 4 ><V>?

Both will be answered by our dynamical hypothesis: statistical bootstrap.

6. STATISTICAL BOOTSTRAP

The idea is rather o]dg) and has undergane some development making it clearer, more
consistent and, perhaps, more convincing. For details the reader is referred to
Ref. 7) and in particular to Ref. 8) and the references therein.

The basic postulate of statistical bootstrap is that the mass spectrum t(m?,b),
containing all the "particles": elementary, bound states and resonances (cldsters)
is generated by the same interactions which we see at work if we consider our
thermodynamical system. Therefore if we were to compress this system until it
reaches its natural volume Vc(m,b), then it would itself be almost a cluster appear
ing in the mass spectrum t(m?,b). Since o(p,A,b) and t(p?,b) are both densities of
states (with respect to different measures: dp and dm?) we postulate

o(p,A.b) & t(p?,h) (9)
L V> =+ vV (m b)

where 2 means "corresponds to" (in some way to be specified). As g(p,a,b) is
Jlsee (4)1 the sum over N of N-fold convolutions of T, the above “bootstrap postu-
late" will yield a highly non-linear integral eguation for t.

There is, however, one important difference between the macroscopic system - even
if compressed to the natural cluster volume - and the clusters making up the system:
the macroscopic system is enclosed in a fixed, externally given volume, while the
cluster chooses its own natural cluster volume and carries it with it; the natural
cluster volume is therefore a four vector VE paraliel to the cluster's four mo-
mentum

v¥(m,b) = A{m,b) gy m= /pp¥ (10)
¢\’ 2 m 14

where the scalar function A(m,b) depends on the dynamics: it expresses how the
cluster chooses its volume as a function of its mass and baryon number. As the
bootstrap is to represent the dynamics, it not only should determine t(p?,b) but
alsa A(m,b). We settle the last question first by requiring, in addition to the
bootstrap postuiate (9), the postulate of “"uniform packing”: for any partition of
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a cluster into N subclusters, we postulate
H N u
Vemb) = I KU(m;.b;) (1)

where K is some constant; K = 1 is dense packing, K< 1 superdense, K > 1 dilute,
Together with (10) this yields:

W N p¥
P . b}
A(mb) o= = T KA(m.,b.) - (12)
i=1 i
. . N
and since for any partition p = X P>
i=1

A(m, ,b.
(AR O gy o

N
I f
o i

tv N, p}] (13)
j=1 i

whence K = 1 and A(m,b)/m = const (independent of b). Thus we obtain dense packing
and a volume proportional to the mass:

i
Wm,b) = const-p¥ = : B m (14)
¢ 8 rest frame P
by which the free parameter B is defined; 4B is the constant energy density of all
clusters, which cannot be found from the bootstrap hypothesis; it has to be fixed
via outside information. Tentatively we identify B with the quark bag constantlo)
B = (145 MeV) , thereby interpreting at the same time our clusters as quark-gluon
bags.

The bootstrap postulate (9) requires that t should obey the equation resulting
from replacing o in Eq. (4) by some expression containing 1 linearly and by taking
into account the volume condition (10), (14).

We cannot simply put V = Vc and A = 0, because now, when each cluster carries its
own, dynamically determined volume, A loses its original meaning. Therefore, in
Eq. (4) we tentatively replace

2V _(m,b)-p

2
a(p,Vc,b) *—?Z}‘F—— 1(p?,b) = T%?!ﬁ T(Plsb)
(15)
2w 2V (ms:b5)-py 2m} )
@ P 2 = s Teihy)

Next we argue that the explicit factors m? and m% arise from the dynamics and
therefore must be absorbed into r(p?,bi) as dimensioniess factors (m?/mz). Thus
in Eq. (4), we replace

e 3
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2m;
o(p,V_.b) = AR 1(p?.b) = Ht(p?,b)
2-p, . Zm; ) .
7 (Pidi P Tzyeas TUPieby) = M (P%:b,) (16)

2m§

H: = )
where either H or m, may be taken as a new free parameter of the model, to be fixed
later (if m, is taken, then it should be of the order of the "elementary masses"
appearing in the system, e.g., somewhere between m and in a model using pions
and nucleons as elementary input). Finally: if clusters consist of clusters which
consist of clusters, which ..., this should end at some "elementary" particles
{where what we consider as elementary is fixed by convention). The bootstrap
equation (BE) reads then

He(p?.b) = Hgy 8, (p? - md) +

- N NN

1
+ I J&(p- T p,) T §,(b- X b,) I Hr(p2,b,)d"p. (17)
N=z" izl V(o) K =1 e 10T

In words: the cluster with mass /p” and baryon number b is either elementary
{mass: ﬁh, spin isospin multiplicity: gb) or it is composed of any number N 23
of subclusters having the same internal composite structure described by this
equation. The bar over r?lb indicates that one has to take the mass, which the
"elementary particle” will have effectively when bound in a large cluster:
m=m-< Ebind > (e.q., ﬁN w 925 MeV). That this must be so, becomes obvious if
one imagines Eq. (17) solved by iteration (the iteration solution exists and is
the physical solution): then Hr(p,b) becomes in the end a complicated function

of p%.b, aN ﬁb and all 9y In other words: in the end a cluster consists of the
"elementary particles"; as these are all bound into the c¢luster, their mass should
be the effective mass, not the free mass m.

Clearly, the bootstrap equation (17) has not been derived; we have made it more or
Tess plausible and state it as a postulate. For more motivation see Ref. 7).

7. SOLUTION OF THE BOOTSTRAP EQUATION

We solve the BE by the same double Laplace transformation which we used before
(Eg. (3)): define
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_B puc: _
o(A): = fo ¥z PHgye (o7 - )P -
c2aTz P E1K(r_"—b) (18)
e L BT
-B puu:
Ha,2): = fe ¥ 5 AbHT(pz,b)d“p
b=lm

Once the set of "elementary particles" (ﬁb,gh} is given, ©(B,A) is a known function,
while 4(8,2) is unknown. Applying the double Laplace transformation to the BE, we
obtain

UBsA) = 0(Bs2) + expd(B.A) - #(B,2) - 1 (19)

This implicit equation for ¢ in terms of @ can be solved withaut regard to the
actual B - A dependence. Writing

6(w): = ¥B.1)

@ = 26 - eG +1

(20)

we can draw the curve ¢(G) and then invert it graphically to obtain G(w) = o(B,A).
(see Fig. 2). G{w) has a square root singu]arityll) at e = o, =.in{4/e); beyond
that value, G({y) becomes complex. Apart from this graphical solution, other forms
of solutions are known:

@ n @
6(0) = n§15“¢ = nzow“ 9™ = [ integral representation} (21)
The power expansion in o was first given in 1870 (yes: eighteen hundred and
seventy12 ) and rediscovered in 197313); the expansion in terms of Amo—m has been
used in our numerical work (12 terms yield a solution within computer accuracy)

and the integral representation will be published e1sewhere14)‘

We consider 4(B,\) =G({w) to be a known function of ©(B.,A). Consequently, 1(m?,b)
is also in principle known. From the singularity of w = @, it follows that
t(m?,b) grows, for m >> mNb, exponentially ~ w exp(m/Ta). In some weaker form
this has been known for a long time7’9’11’13’15’16).

8. ONCE MORE BACK TO THERMODYNAMICS

Having answered the two questions left open at the end of Section 5, we now have
the full information to write down zant of Eq. (8). Fortunately we do not need
to know t{p?,X) explicitly; the formal similarity between Eq. (8) and Eq. (18)
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immediately yields a relation between 2nZ and o (90 to rest frame of A and g8):

_ 2A 9
I"Zpt(T’A’A) N VO T O(B,1) + C(B,A)

c(B,A): (@2)

2 b 2a 2y B
REARE o AN SRR T T
As is obvious from the last Tine, C(B,A) corrects the partition function by re-
placing the one-particie contribution of the bound masses Eb by thase of the free
masses m with the effect that all unbound, free particles in our system now have
the free mass, while all those bound in clusters still have the bound mass. We
have included this correction in all our numerical work, though it is almost al-
ways negligible; but we drop it in the rest of this paper (it might be important
in other contexts).

Thus, once the "elementary particies® {mb.gb} and the constants B and H are fixed,
a specific model is defined and gnz t is a known function. Also the relation
between <V> and A is now fixed: since V¥ = pY/4B, we have

u
V=g s+ 5 (23)

Finally we recall €q. (7), which enables us to calculate physical quantities for a
system of extended particles.

9 PHYSICAL PROPERTIES OF OUR SYSTEM
As an example we calculate the energy density as a function of 8 and \:
I - -3
<E> = -3 InZ(B<V>,1) = % Ezpt(B,A,A) (28)

?;3;"Zpt is Tinear in A, the last term is equal to A-ept(ﬂ,x); hence, after using

<E> . € t(ﬂ.k)
W T ie(BA) = 1+eptzﬂ,lj748' (25)
where
ene(8:1) = ol 2 0(g.)
pt®? T2n)°H g7 6. (25)
Similarly one obtains the baryen number density cont.
Vit (Bad)

v(8.A): = $02

1+cptiﬂ,li74ﬂ

) (26)
c=1, 2 - 2 3 2
Vpt(B:A): = 3 A 5y anZ (B.800) = - o7 * 3% 35 O(8)

and the pressure
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P (8:2)
_ t
P(B.A) = 1+Eptts’)‘jME (27)

T ___2t 3
Ppt(B.A).- i 2.nZPt(B,A,A) = W 8 O(R,A)

<V¥> = A (1 +e_.(B,1)/4B)

pt!
(28)

b =<V>"(1 - €(B,))/4B)

As all the point-particle quantities involve derivatives of ®(8,\), they become
singular at ¢ = i €.9.,

2 _ dG 3p

38 %8 = 35 58 (29)
and d6/de ~ (<P°-to)_ll2 (see Fig. 2). Therefore ¢ + @, implies point-particle
infinities. Consider first

o(8,4) = 0, = 2n(4/e) (30)

This defines a curve in the 8-A plane. Its position depends, of course, on the
admﬂymwnhmofusALie”on&ewtﬁ"dmmﬂwfpwﬁdﬁ{%g“
and the value of the constant H {Eq. (16)]. In the case of three elementary pions
(w+u0ﬂ_) and faur elementary nucleons (spin @ isospin) and four antinucleons, we
have from Eq. (18)

m m
@(8,3) = 27HT [ 3n Ka (1) + 4(x Tk (41 (31)

and the condition (30), written in T and i = Tn) yields the curve shown in Fig.3,
the "critical curve". For u = 0 the curve ends at T = T0 = 0.190 GeV, where To’
the "limiting temperature of hadronic matter", is the same as that appearing in
the mass spectrum »9,15,16) 1(m?,b) ~ n’ exp(m/To) (for m >> me).

Our system consists, for small T and u, of nucleons and nuclei. For increasing T,
pion creation sets in and finally also baryon-antibaryon pair creation, K-hyperon
associated production, etc. If the latter is to be taken into account, the input
set of “elementary particies" must be enlarged. This hardly changes the position
of the critical curve and the equations of state of hadron matter, since Tu is of
the order of the pion mass, while the other particles have larger masses and give
little contribution to @(B,A). Mare precisely: each new conserved quantum number
(strangeness, charm, ...) gives rise to another X; hence the singularity is defind

by ©(BsA1sAzshs ... An) <o, as a hypersurface in an n + 1 dimensional space. Sinae,

By
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however, in normal physical situations only ‘the baryon number is different from
zero, we have to consider anly the intersection of this hypersurface with the
T'”baryon plane. That is the curve which was said to be little different from the
one shown in Fig. 3.

The value of the constant H in Eq. (16) has been chosen to yield To = 0.19 GeV
(this apparently large value of T0 is necessary to yield a maximal average decay
temperature of the order of 0.16 GeV; see part 2 below). Thus

H 0.724 Gev™*

(32)
n
o

0.398 GeV ({when B = (145 MeV)9

where the value of m lies, as expected, between m, and iy [(mTr mN)l/z = 0.36 GeV).

Taking the critical curve of Fig. 3 as representative, we ask: what does our system
do when it approaches the critical curve? As the point particle quantities apt'
“pt' Ppt diverge, one sees easily (by comparing degrees of divergence when ¢ -+ wo)
that

c(B*,A*) = 4B

MBS = vgrpglemat) 0
0 (33)

A(B*,2*) = 0 if <V> { 0

P(8%,1*)

V(B*,A*) = = if A 40
where 8% A* are the values along the critical curve.

The constant energy density of our clusters was, independently of m and b, always
4B. Hence the first Tine suggests that on the critical curve the whole hadron
system has condensed into one giant cluster. This is also witnessed by the
vanishing of the pressure; indeed, ane can explicitly see that for any given ex-
ternal volume <V> the number N of "particles" (clusters) contained in it goes to
zero on the critical curve: £q9. (8) can be written

| N
2 (800) = 288 (ga0e)| = oz ko)) (34
" RTINS A )
Hence, with (7) and (22)

<N>

It

3 M8}y _ o - __ 20 3
€ 3F 1n2pt 55:1- 7 = 1?;73H-5§-®(s,x) (35)

and, with (28)

_ 22
J5 © - Tz 35 08/ (Lre,,/48) e (36)
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because ot contains second derivatives of O.

Note that from (27) and (36) it follows that

Pe<¥> = <N>T (37)

that is: our hadron gas obeys the ideal gas equation if <N> is the number of
clusters; of course, <N> is not a constant (as for an ideal gas), but a function
of 8.x.

The critical curve limits the hadron gas phase; by approaching it, all hadrons
dissolve into a giant cluster, which we might call "hadron ligquid", but which we
would prefer to identify with a quark-gluon plasma. Indeed, as the energy density
along the critical curve is constant (= 48), the critical curve can be attained
and, if the energy density becomes > 4B, we enter into a region which cannot be
described without making assumptions about the inner structure and dynamics of the
“elementary particles” {ﬁh,gh} - here ?ion and nucleon - entering into the input
function @(B,)). Considering pions and nucleons as quark-gluon bags leads natural-
ly to the above interpretation. We discuss these points and applications of our
theory to relativistic heavy ion collisions in Part 2 of these lectures.
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Macroscopic volume Natural cluster
\' volume Ve (m,b)

Figure 1 : The bootstrap idea: a macroscopic system compressed to the "natural
cluster valume" becomes itself almost a cluster consisting of clusters.
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Figure 2 : Bootstrap function G{p) - the dashed line represents the unphysical
branch. The root singularity is at 9, = in{4/e) = 0.3863 .
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our theory is not valid because we neglected Bose-Einstein and Fermi-
Dirac statistics.
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