
Volume 97B, number 1 PHYSICS LETTERS 17 November 1980 

HOT HADRONIC MATTER AND NUCLEAR COLLISIONS ~ 

R. HAGEDORN 
CERN, Geneva, Switzerland 

and 

J. RAFELSK1 x 
CERN, Geneva, Switzerland 
and Institu t fftr Theoretische Physik der Universitiit, 
D-6000 Frankfurt a/M, Fed. Rep. German), 

Received 22 August 1980 

Based on the statistical bootstrap model of strong interactions, we develop a description of hadronic matter with parti- 
cular emphasis on hot nuclear matter as created in relativistic heavy ion collisions. We apply our theory to calculate temper- 
atures and average transverse momenta of nucleons and pions from the decay of hadronic fireballs. 

We propose a description of  hot  hadronic matter  
based on the statistical boots t rap model [1]. Our aim 
is to describe the gross properties of  particle spectra 
emitted by heated and/or compressed nuclear matter.  
At present, the data relevant to our investigations be- 
gin to be available from experiments involving rela- 
tivistic heavy ion collisions, triggered (by high multi- 
plicities) for central collisions only [2]. In this paper 
we will focus on temperatures and average transverse 
momenta of  nucleons and pions produced in such col- 
lisions. 

While it is quite difficult to master the complexi ty 
o f  the strong interactions in detail, it has been shown 
[3] that hadronic resonance production dominates the 
interaction in all hadronic reactions. The central r61e 
is then assumed by the hadrnoic mass spectrum r (m 2, 
b), which here, in addit ion to the usual dependence 
on the mass m of  the resonance, is also a function of  
the conserved baryonic number b. z(m 2, b)  d(m 2) is 
the number o f  bound states (resonances) in the mass 
interval d(m 2) at a given baryon number b. 

Dedicated to Yuri Orlov. 
] Supported in part by Deutsche Forschungsgemeinschaft. 

,1 The "natural volume" is assumed when external forces 
are absent. 

Unlike the case of  high energetic p r o t o n - p r o t o n  
scattering, the correct t reatment fi la Van der Waals of  
the volume occupied by each participating hadron is 
essential. We have found [ 1 ] that the "natural  volume 
V , ,  ,a of a hadronic fireball cluster grows proport ional  

C 

to its mass. As a consequence we see at the hadronic 
phase boundary a constant maximal energy density 
which is a free parameter of  the model. The newly 
reformulated [1] bootstrap model provides us with 
the required hadronic mass spectrum z ( p  2, b) and 
with the particular energy dependence of the fireball 
volume necessary in the thermodynamic approach. 

The description of the thermodynamic properties 
of  hot  hadronic matter  begins with the grand parti- 
tion function Z(/3, V, X), as obtained from the level 
density o(p ,  V, b): 

oo 

Z(13, V, X) = ~ xb f e - ~ ' P a ( p ,  V ,b )  d 4 p .  (1) 

We use the covariant generalisation [4] of  thermodyna- 
namics with the inverse temperature four-vector/3 u 
and the four-volume V u . In the rest frame of  the sys- 
tem we have/3, p = 130 E = E/T  (h = c = k = 1) and 
V, = (V, 0). X is the fugacity, related in the rest frame 
to the relativistic chemical potential /a:  X = exp(/a/T);  
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it is introduced in order to conserve the baryon num- 
ber in the statistical ensemble. All quantities of  physic- 
al interest can be derived as usual by differentiating 
In Z with respect to its variables. 

Assuming that the mass spectrum r(m 2, b) is al- 
ready known, the grand microcanonical level density 
is given by the invariant phase space integral ,2 : 

o(p ,  Vex, b) = 8 4 ( p ) 6 K ( b )  
~o N N 

' s (  ( ) + ~ ~ .  64 P -  Pi ~K b -  ~ b i 
N = I  '= i=1 

N 
× IF] 2Au p• r ( p  2, bi) d4pi • (2a) 

i= 1 (27r) 3 
Above, the first term corresponds to the vacuum 
state. The Nth  term is the sum over all possible parti- 
tions of  the total baryon number and the total mo- 
mentum p among N boltzmannions, each having an 
internal number of  quantum states given by r ( p  2, bi). 
These boltzmannions are, in general, excited hadronic 
clusters of  baryon number b i ( - ~  ( b i (c~).  Every 
cluster can move freely in the remaining volume A 
left over from the external volume Vex after subtracting 
the proper volumina V c of  all clusters: 

N 

A~ := Ve~x - ~ V u • (2b) C, l ' 
i=l'= 

In the generalisation (2a) of  the popular phase 
space formula, three essential features of  hadronic 
interactions are now explicitly included [1]: 

(a) The dense set of  hadronic resonances dominat- 
ing particle scattering via r(m 2, hi). 

(b) The proper natural volumes of  hadronic clusters 
via Au. 

(c) Conservation of  baryon number and clustering 
of  hadrons into lumps of  matter carrying their natural 
volume. 
Further features naturally contained in eqs. (1) and 
(2) include: 

(d) coexistence of  a pion gas with nucleons, 
(e) baryon-ant ibaryon pair creation, 
(f) chemical equilibrium between all constituents 

(nucleons, isobars, mesons...). 

*~ The extreme richness of  the spectrum r(m 2, b) ~ e x p ( m /  
To) enables us to neglect Fermi and Bose statistics above 
T ~ 50 MeV and treat  all particles as "bol tzmannions" .  

We assume that members of  the same isospin multiplet 
are present in equal proportions [e.g. NTr+/Nn-/NTr o 
= l/1/1) and average over spin and isospin. 

Eq. (2) leaves us with the task of  finding the mass 
spectrum r. Experimental knowledge of  r is limited 
to low excitations and/or baryon number. We there- 
fore introduce here a theoretical model: "the statistical 
bootstrap", in order to obtain a complete mass spec- 
trum consistent with direct and indirect experimental 
evidence. The qualitative arguments leading to an inte- 
gral equation for r(m 2, b) are the following: when 
Vex in eq. (2) is just the proper volume V c of  a ha- 
dronic cluster, then o in eq. (2), up to a normaliza- 
tion factor, is essentially the mass spectrum r: indeed, 
how could we distinguish between a composite sys- 
tem [as described by eq. (2)] compressed to the natural 
volume of  a hadronic cluster and an "elementary" 
cluster having the same quantum numbers? Thus we 
demand 

o(p, v, b)l V=Vc ~ l-Ir(P2' b), (3) 

where the "bootstrap constant" H is to be determin- 
ed below. It is not sufficient simply to insert eq. (3) 
into eq. (2) to obtain the bootstrap equation for r; 
more involved arguments are necessary [ 1 ] in order to 
obtain the following "bootstrap equation" for the 
mass spectrum r: 

H r ( p  2, b) = HZb60(p 2 - M 2)  

N N 
- 

"= ( bi} i= 1 
N 

× I-I H r ( p  2, hi) dapi . (4) 
i=1 

The first term is the lowest one-particle contribution 
to the mass spectrum: the "input term" b = 0, -+1 cor- 
responds to pions and (anti)nucleons respectively. 
The index "0"  restricts the 6 function to the positive 
root only. z b is the multiplicity (2I + 1)(2J + 1) of  
the ground state clusters. In the course of  deriving [1] 
the bootstrap equation (4) it turns out that the cluster 
volume V c grows proportional to the invariant duster 
m a s s :  

Vc(p2) = (p2) l /2 / (4B) ,  (5) 

(4B) is a universal energy density of  hadronic clusters 
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chosen here to correspond to the quark bag [5] energy 
density with B = (145 MeV) 4. 

The bootstrap constant H and the bag constant B 
are the only free parameters of  the model. We intro- 
duce the double integral transform [1] [already used 
in eq. (1)] of  the one-particle term in eq. (4): 

c ~  

~(/3, ~ ) : =  ~ ~k b f HZb60(P 2 - M2)e  -13"p d 4 p  
b = -  = (6a) 

and the mass spectrum: 
o o  

O(t3, x) := ~ x b fm.(p 2, b)e-~'p dap. (6b) 

Considering pions and nucleons only as input, we find: 

~(/3, X) = 27rHT [3m~rK 1 (mrJT) 
(7) 

+ 4(X + 1/X)mNKI(mN/T)] . 

Applying this same transform to the entire eq. (4) 
results in: 

¢(/3, X) = 2¢(/3, X) - exp [q~(/3, X)] + 1. (8) 

The well known properties of  the inverse function 
ofeq.  (8), G(¢) = q~(/3, X), shown in fig. la, and in par- 
ticular a singularity at tp --* ~P0 = In (4/e) lead to the 
critical temperature [6] T O of  hadronic interactions. 
We have chosen H = 0.724 GeV -2 ,  namely so that 
T O = 190 MeV. The reason for this choice will become 

obvious below. From here on everything is fixed; no 
adjustable parameters remain. 

The point ~0 = ¢0 in fig. la defines through eq. (7) 
a singular curve ~(13, X) = ~0 in the/1-  T plane as 
shown in fig. lb. As we shall shortly see, this boundary 
to the hadronic world is characterized also by a con- 
stant energy density 4B and vanishing hadronic pres- 
sure. We note that/1 = 0 (X = 1) implies zero baryon 
number,/J ~ m N implies T ~ 0 and leads to cold 
baryonic matter at about twice the nuclear matter den- 
sity of  0.17 m N fm -3 .  However, as indicated by the 
shaded area in fig. lb, our present approach is inap- 
plicable for too low a temperature, since there Fermi 
and Bose statistics play an important r61e. 

With this, the task of  determining the mass spec- 
trum is in principle completed, as we can now invert 
eqs. (8) and (6b). We then find that 7"(m 2, b) ~ era~To, 
as is well known, [6]. We will now show how In Z, 
eqs. (1) and (2), can be given directly in terms of  the 
known function ¢, without the need for an explicit 
calculation of  r. Indeed, we can use the formal similar- 
ity between eq. (4) and eq. (2a) in order to derive a 
relation between their integral transforms [1]; from 
here on, 13 - (J3j~ ~ u ) l / 2  : (9) 

In Z(~, Vex, X) = -[2&(Vex)/H(27031 Oe~(f3, X)/0/3. 

The remainder of  our discussion is a simple applica- 
tion of  the rules of  statistical thermodynamics. By in- 

( . 9  
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Fig. 1. (a) Bootstrap funct ion  G(¢) - the  dashed line represents the  unphysical  branch. The root  singularity is at ¢o = In (4/e) 
= 0.3863. (b) The critical curve corresponding to ¢(T,  u)  = ~oo in the  ta - T plane. Beyond it the usual  hadronic world ceases to 
exist. 
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vestigating the meaning of  the thermodynamic averages 
it turns out that the apparent (~, X) dependence of  the 
available volume A in eq. (9) must be disregarded when 
differentiating In Z with respect to 13 and X. As eq. (2a) 
shows explicitly, the density of  states of  extended 
particles in Vex is the same as that of  point particles in 
A. Therefore also 

In Z(~, Vex, ~,) = In Zpt (~, A, ),). (10) 

We thus first calculate the point particle energy and 
baryon number densities and pressure: 

1 8 2 8 2 
ept = - -~  8--~ln Zpt H(2w) 3 892 ~,b(/3, )k), ( l l a )  

0-~ - O 2 
1 2 X ~5(/3, X) ,  ( l l b )  Vpt = ~ ~, In Zpt H(21r) 3 

T 2T 8 
Ppt ='& In Zpt - q5(/3, X). ( l l c )  

H(27r) 3 8~ 

From this, we easily find the energy density, as 

<E) 1 ~ A 
c -  Ve x - Vex In Z(/3, Vex, X) = %t" (12) 

Using eq. (5), the available volume A of  eq. (2b) be- 
comes in the restframe: 

a = Vex - <E)/4B. (13) 

Inserting eq. (13) into eq. (12) and solving for <E>we 
find: 

e(/3, •) = ept (fl, X)/[I + ept(/3 , X)/4B] , (14a) 

Vex = A[1 + ept(~ , X)/4B] , (14b) 

and similarly for the baryon density and pressure: 

p--- ( b )  1 X ~  in Z(/3, Vex, X ) 
Vex Vex 

_ Vpt 

1 + ept /4B ' 

(14c) 

Ppt . (14d) __T 
P --- v In Z(13, Vex, X) = 1 + ept /4B - - e x  

With eq. (14) we have a complete set o f  equations o f  
state for observable quantities as functions of  the 
chemical potential/J, temperature T and external vol- 

ume Vex. While these equations are semi-analytic, one 
has to evaluate the different quantities numerically due 
to the implicit definition of~b(t3, X) that determines 
In Z. However, when/3, X approach the critical curve, 
fig. lb, we easily find from the singularity of  ~b that 
ept diverges and therefore 

e -+4B  , P ~ O ,  A-->O. (15) 

These limits indicate that at the critical line, mat- 
ter has lumped into one large cluster with the energy 
density 4B. No available volume is left, and as only 
one cluster is present, the pressure has vanished. How- 
ever, the baryon density varies along the critical curve; 
it falls with increasing temperature. This is easily under- 
stood: as temperature is increased, more mesons are 
produced that take up some of  the available space. 
Therefore hadronic matter can saturate at lower baryon 
density. We further note here that in order to proper- 
ly understand the approach to the phase boundary, one 
has to incroporate and understand the properties of  
the hadronic world beyond the critical curve - we be- 
lieve [7] that a transition to the quark-gluon plasma 
phase occurs. We postpone the discussion of  these as- 
pects until a later paper, and turn now to the study of  
temperatures and average transverse momenta of  
particles emitted from hot hadronic matter in relativis- 
tic heavy ion collisions. 

We assume that in relativistic collisions triggered to 
small impact parameters [2] a single fireball of  hadron- 
ic matter can be produced ,a. Except for rare events, 
not all nucleons from projectile and target nuclei will 
participate in the formation of  the fireballs [8]. How- 
ever, in particular, in nearly symmetric collisions (pro- 
jectile and target nuclei are similar) we can argue that 
the number of  participants in the centre of  mass of  
the fireball originating in the projectile or target are 
the same [21. 

Therefore it is irrelevant how many nucleons do 
form the fireball - the above symmetry arguments 
leads in a straightforward way to a formula for the 
centre of  mass energy per participating nucleon: 

u :=Ecm/A =toNi1 +(Ek,  lab/A)/2mN]l /2  ' (16) 

4:a We are aware of the whole problematics connected with 
such an idealization; a proper treatment should include 
collective motions and distributions of collective velocities, 
local temperatures and so on [3,9], triggering for small im- 
pact parameters hopefully eliminates some of the compli- 
cations. 
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where Ek, lab/A is the projectile kinetic energy per 
nucleon in the laboratory frame. While the fireball 
changes its chemical composition (Tr + p ~ A etc.) 
during its lifetime through a change in temperature, the 
conservation of energy and baryon number assures us 
that u in eq. (16) remains constant. The influence on 
u of  pre-equilibrium emission of  hadrons is negligible. 

From the ratio of  eqs. (14a) and (14c) we find that 
u in the statistical average is: 

(U) = (E )/( b ) = ept(/3, X)/t)pt(/3, ~.). (17) 

Thus from eqs. (16) and (17) we see that the projec- 
tile kinetic energy fixes through u = const, a path 
("cooling curve") in t h e / ~ - T  diagram. In fig. 2a, some 

I00( 

5oq 

zk 

of these paths are shown for the following typical 
values OfEk, lab/A = (1) 0,5; (2) 0.703; (3) 1.07; (4) 
1.80; (5) 3.96 GeV. In fig. 2b, the baryon density of  
the fireballs along these lines is shown in units of 
u 0 = 0.17 fm -3 ,  the normal nuclear density. As the 
temperature decreases, the baryon density of the fire- 
balls falls rapidly, while the entropy increases. This 
occurs essentially through a change in the chemical 
composition of hadronic matter  and not through con- 
version of an important part of  the internal energy in- 
to kinetic energy of the radial motion. The horizontal 
line in fig. 2b corresponds to normal nuclear baryon 
density - had we chosen a larger value o rB  it would 
correspond to a so much higher baryon density. 

Along the cooling curves in fig. 2, particles are con- 
tinuously emitted with characteristic momenta  cor- 
responding to the momentary temperature and relative 
intensity belonging to the chemical composition. The 
experimentally observable temperature is then obtain- 
ed by averaging along the cooling curves, while assum- 
ing that there the temperature T decreases approxi- 
mately linearly with the time, as long as particle emis- 
sion is significant. As the emitted particles can be 
reabsorbed by the hadronic clusters present before 
reaching free space, we must include a factor A/Vex, 
eq. (14b), which is the relative probability to escape. 
Thus we find: 

2 
It 

O 

0 50 I00 150 200 
T (MeV) 

Fig. 2. (a) Paths of  constant energy per baryon, per given 
projectile energies, and (b) the corresponding baryon densities 
in units of nuclear baryon density. The kinetic energies of 
projectiles per nucleon are (1) 0.5 ; (2) 0.703; (3) 1.07; (4) 
1.8; (5) 3.96 GeV. 

fc (A/Vex)Tf(rn,  T, la) dT 
( T)c := fc ( A/Vex) f (m ,  T, la) dT ' (18) 

where f is the integrated momentum spectrum [10]" 

f(rn, T, la) = f d3p ~ exp [_(p2  + m2)l/2/T + , /Vl  

(19) 
_ m 2 T K 2  ( m / T )  e u / r  . 

27r 2 

The integration along the cooling curves is carried out 
by inserting the funct ion/J(T)  that follows at constant 
given energy per baryon u. The average temperature, 
as a function of the range of integration described by 
T, reaches different limiting values for different parti- 
cles. The thus obtained limiting value is the observable 
"average temperature" of  the debris of  the interaction, 
while the initial temperature is difficult to observe. 
When integrating along the cooling line, we can easily 
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Fig. 3. (a) The average temperature and (b) the average trans- 
verse momentum for nucleons (full lines) and pions (dashed 
lines) as a function of the projectile laboratory energy per 
nucleon. 

determine the average hadronic cluster mass. The in- 
tegration for protons is interrupted (protons are frozen 
out) when the average cluster mass is about half the nu- 
cleon isobar mass, so that the nucleon-emitting clusters 
have essentially died out. This slightly model-depen- 
dent procedure will be described in more detail else- 
where. This is also the place to comment on our choice 
of  the bootstrap constant H so that T O ~ 190 MeV: 
the observed [ 11 ] "experimental  T 0 ' '  o f  the order of  
160 MeV is an average in the above sense, our T 0 
leads, for very large Ek, to an average value of  the or- 
der of  160 MeV. In fig. 3a, we show the expected pion 
and nucleon average temperatures as a function of  the 
heavy ion kinetic energy. The baryon average temper- 
ature is consistently higher than that of  pions. Two ef- 
fects contribute to this strange result: 

(1) The particular shape of  the cooling curves (fig. 
2a): the chemical potential drops rapidly from the 
critical curve, thereby damping baryon emission. Hence, 
baryons are emitted dominant ly  earlier at the higher 
temperature,  while pions, which do not  feel the baryon 
chemical potential,  continue being created also at 
lower temperatures. 

(2) The freeze-out of  baryons occurs when no sig- 
nificant number of  clusters with a mass greater or equal 
to the nuclear isobar mass remain, while pions are still 

being emitted from lower mass clusters until all 
clusters have disappeared, and (T)  has reached its low- 
est attainable value along the cooling line. 

It may be more practical to discuss the average 
transverse momentum of  the emitted particles. In 
principle, to obtain this result we have to perform a 
similar averaging as above; for the average transverse 
momentum at given T, ~t we find [10] 

fPs exp ( - [ ( P  2 +m2)1/2 u]/T} d3p 
(&(m, T,/a))p . . . . .  

f e x p {  [ ( p 2 + m 2 ) l / 2 _ u ] T } d 3 p  

(rrmT/2)l/2 Ks/2(m/T)eU/T (20) 

Kz(m/T)e u/T 
The average over the cooling curve is then: 

<< p±(m, T, U))p)c 
(21) 

f c ( A/Vex) T3/2(nrn/2 )l/2 K5/z(m/T) eu/T dT 

fc (A/Vex)TK2(m/T)eU/T dT 
We did verify numerically that the order of  averages 
does not matter:  

(p±(m, (Tc), U))p ~ ((p±(rn, T,/2))p) c , (22) 

which shows that the mean transverse momentmn mea- 
surement is the simplest (and safest) method to deter- 
mine the average temperature (indeed better than fit- 
ting ad hoc exponential  type functions to p~ distribu- 

tions). In fig. 3b we show the dependence of  the aver- 
age transverse momenta  of  pions and nucleons on the 
kinetic energy of  the heaw ion projectiles. 

In this paper we have shown how a theory of  
hadronic matter  that includes important  features of  
hadronic interactions and limiting hadronic tempera- 
tures may be formulated and applied to the descrip- 
tion of  relativistic heavy ion collisions. While the mea- 
surement of  the average temperature and transverse 
momenta already provide a certain test of  our present 
understanding of  hot hadronic matter,  more work is 
needed to understand particle multiplicities and ex- 
clusive reactions. We intend to return to the discussion 
of  these further features of our theory in the near future 
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of  Theoretical Physics at CERN for its kind hospital i ty 
during the course of  this work since 1977. 
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