Simple Molecules

\[2 \text{H} \text{binding energy} = -27.2 \text{eV} \]

\[2 \text{nd e} - \text{1st e} = -4.136 - 25 \text{eV} \]

\[= -54.4 \text{eV} \]

\[\text{total He} \]

\[E = -\frac{1}{2} \text{mc}^2 \sum \frac{Z}{r} \]

What keeps H-H from collapsing to He-like structure??

(Gould vs. repulsion nuclei)

\[E_{\text{Coul}} = \frac{Z_1 Z_2 e^2}{r} \]

\[27.2 \text{eV at } r = a_0 \]
Molecule

Quantum Attraction
opposed by
Coulomb Repulsion

Energy

nucleus separate \(R \)

molecule Potential

Quantum binding

1. Molecules will be bound by energy similar to last electron ionic attraction.

2. Nuclei separate \(x_0 \) will be

\[1 - 2 \times a_0 \]

\(L + 2 \) \(\implies \) Molecular Vibrations

\(h \nu = \Theta (E_{\text{atom}} \sqrt{\frac{m_e}{m_N}}) \)

Q: Why Noble gases do not form molecules?
Numeric Example

H_2 : binding $O(5 eV)$

Separation $O(1.2 a_0)$

\[V = -E_0 + \frac{1}{2} k (x-x_0)^2 \]

\[k = \text{oscillated const} \]

\[\hbar \omega = \hbar \sqrt{\frac{k}{M}} \]

\[m_1 + m_2 \approx M \]

\[V = E_0 \left(\frac{x}{x_0} - 1 \right)^2 - E_0 \]

\[k = \frac{2E_0}{x_0^2} \]

note (isotope dependence) $\Rightarrow \hbar \omega = O(0.1 eV)$
Beyond Vibration

\[E_r = \frac{L^2}{2I} = \frac{\hbar^2 \ell (\ell + 1)}{2 \left(m_1 r_1^2 + m_2 r_2^2 \right)} \]

Hydrogen

\[m_1 = m_2 = 2\mu \]
\[r_1 = r_2 = \frac{x_0}{2} \]

\[x_0 \sim 1.2a_0 = \frac{1.2 \frac{\hbar c}{m \alpha c^2}}{2\mu} \]

\[\frac{E_r}{E_e} = \frac{1}{e} m \alpha^2 \alpha^2 \]

Atomic energy, hydrogen

\[E_r \sim 10^{-3} eV \cdot \ell (\ell + 1) \]

\[\text{thermal energy} \]
Material Transparencies

- Why are many liquids transparent?
 Only transparent in the 'visible' spectrum ($\lambda \sim 400 - 700 \text{ nm}$)
 \[E_y = 3eV \quad 1.77eV \]

- Why are many crystals transparent?
 "No" Absorption in Visible
 a) rotations are 'threomoe'
 b) vibrations are 'infrared'
 c) atomic excitations
 and 'ultraviolet'

 Visibility 'window'

Special cases
- metals: light reflected (boundaries)
- mid-heavy elements with unenclosed shells: ionic or excited, e.g., in visible
\[(T + V) \psi = E \psi\]

\[T = -\frac{\hbar^2}{2me} \nabla_x^2 \frac{\hbar^2 e^2}{2m_z} \frac{1}{\sqrt{x_1^2 - x_3^2}} - \frac{\hbar^2 e^2}{2m_z} \frac{1}{\sqrt{x_2^2 - x_3^2}}\]

Quantum Chemistry

\[V = -\frac{Z_1 e^2}{4\pi \varepsilon_0} \frac{1}{\sqrt{x_1^2 - x_3^2}} - \frac{Z_2 e^2}{4\pi \varepsilon_0} \frac{1}{\sqrt{x_2^2 - x_3^2}} + \frac{Z_1 Z_2 e^2}{4\pi \varepsilon_0} \frac{1}{\sqrt{x_1^2 - x_3^2}}\]

Steps: Separate CM motion $$\Rightarrow$$ 6 coord.

Born Oppenheimer: Freeze nuclei, obtain molecule potential field

Solve for vibrations, rotations