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1. Recast the following initial/boundary value problem as a discrete es-
timation problem. First, cast the problem in terms of (center) finite
differences in space and then use explicit Euler in time. This explicit
numerical method is not ideally suited for this PDE, but the point
here is to have some practice re-casting problems so that they are
suitable for estimation. Assume that u = u(x, t), t ≥ 0, x ∈ [0, 1], and
f = f(x, t) is a given forcing function.

The problem is

ut = νuxx + f(x, t)

u(x, 0) = U0

u(0, t) = g(t)

u(1, t) = 0.

You do not have to solve the system.

2. This is a classic problem in Kalman Filter theory. For details, see M.
Athans, R. P. Wishner, A. B. Bertolini, “Suboptimal state estimation
for continuous nonlinear systems from discrete noisy measurements,”
IEEE Transactions on Automatic Control, AC-13(5), pp504-514, 1968.
The problem is concerned with tracking a body falling through the
atmosphere. The model for the dynamics is given by

ẋ1(t) = −x2(t)

ẋ2(t) = −e−γx1(t)x2
2(t)x3(t)

ẋ3(t) = 0.

The gravitational force is assumed negligible here when compared to
air drag. The last entry in the state vector is called the ballistic co-

efficient. Measurements from the radar position occur at δ second
intervals, tm = (0, 1, 2, ...)δ, and are given by

y(tm) = r(tm) + w(tm) =
√

M2 + (x1(tm) − H)2.

Here, r is the radar range. The time interval should be [0, 60] seconds.
Make δ commensurate with the time stepping of the explicit Euler.
You will need to take about 6000 Euler steps.
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The model parameters are

M = 100, 000 ft

H = 100, 000 ft

γ = 5 × 10−5

E[w2(tm)] = 104 ft2.

The measurement error is assumed to be Gaussian with zero mean.
The initial state of the system is

x1(0) = 300, 000 ft

x2(0) = 20, 000 ft/s

x3(0) = 10−3.

Use an explicit Euler to solve for the dynamic equations (you can also
use a Runge-Kutta 4 with just a little more effort). You need a “guess”
for the initialization of the state estimates. Take them to be

x̂1(0) = x1(0)

x̂2(0) = x2(0)

x̂3(0) = 3x3(0),

and the covariance matrix is taken as the diagonal matrix

P̂ (0) = [106, 4 × 106, 10−4]T I3×3.

Vary the data measurement frequency and

(a) Plot the “true trakectory” as a function of time for the position,
velocity, and ballistic coefficient.

(b) plot the error, as a function of time, between the “true trajectory”
and the filter solution for the estimated position, velocity, and
ballistic coefficient.

(c) (Optional), recast the estimation problem using the extended
Kalman filter.

(d) (Very Optional), You might want to try on your own to implement
a filter/smoother using the RTS algorithm.
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3. Consider the estimation problem for the position x(t) of a particle in
a double-well potential subject to Gaussian noise,

ẋ(t) = f(x(t)) + κη(t)

x(0) = 0,

where < η(t) >= 0, and < η(t)η(t′) >= δ(t − t′). The force

f(x) = −
dU

dx
,

where the potential U = x4 − 2x2. This is system has 2 stable critical
points at x = ±1, and an unstable critical point at x = 0. The noise
strength κ should be fixed at 0.5 for specificity. The particle has been
observed at tm = 0, 1, 2, .., 10, and these measurements are given by

y(tm) = x(tm) + rγ(tm),

where γ is a delta-correlated zero mean Gaussian noise process repre-
senting the measurement error.

(a) Ignore the measurements for now: show that the equilibrium sta-
tistical distribution Ps(x) ∝ exp(−2U(x)/κ).

(b) Set up but do not solve the EKF estimation problem for the
particle position.

(c) Instead of actually solving the system instead write down some of
the conclusions reached by R. N. Miller, M. Ghil, and F. Gauthiez
in “Advanced data assimilation in strongly nonlinear systems,”,
Journal of Atmospheric Science, 51, pp 1037-1056, 1994.

(d) (Optional), set up the RTS/EKF estimation problem for the par-
ticle position.
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