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Abstract

This paper concerns the homogenization of a one-dimensional elliptic equation
with oscillatory random coefficients. It is well-known that the random solution
to the elliptic equation converges to the solution of an effective medium elliptic
equation in the limit of a vanishing correlation length in the random medium. It is
also well-known that the corrector to homogenization, i.e., the difference between
the random solution and the homogenized solution, converges in distribution to
a Gaussian process when the correlations in the random medium are sufficiently
short-range. Moreover, the limiting process may be written as a stochastic in-
tegral with respect to standard Brownian motion. We generalize the result to a
large class of processes with long-range correlations. In this setting, the correc-
tor also converges to a Gaussian random process, which has an interpretation as
a stochastic integral with respect to fractional Brownian motion. Moreover, we
show that the longer the range of the correlations, the larger is the amplitude of
the corrector. Derivations are based on a careful analysis of random oscillatory in-
tegrals of processes with long-range correlations. We also make use of the explicit
expressions for the solutions to the one-dimensional elliptic equation.

1 Introduction

Homogenization theory for second-order elliptic equations with highly oscillatory coef-
ficients is well developed, both for periodic and random coefficients; see e.g. [2, 6]. The
analysis of correctors, which measure the difference between the heterogeneous solution
and the homogenized solution, is more limited.

In the periodic setting, the solution of so-called cell problems allow us to obtain
explicit expressions for the correctors. Denoting by ε the size of the cell of periodicity

∗Department of Applied Physics and Applied Mathematics, Columbia University, New York NY,
10027, U.S.A.; gb2030@columbia.edu
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of the oscillatory coefficients, the amplitude of the corrector for a second-order equation
is typically of order ε [2, 6].

In the random setting, the situation is complicated by the fact that the local problems
are no longer defined on compact cells. And as it turns out, the amplitude of the
correctors is no longer of size ε in general, where ε now measures the correlation length
of the random heterogeneities. Relatively few general estimates are available in the
literature on the size of the correctors; see [13]. For the one-dimensional second-order
elliptic equation (see (1) below), much more is known because of the availability of
explicit expressions for the solutions (see (3) below). The analysis of correctors was
taken up in [4], where it is shown that the correctors’ amplitude is of order

√
ε provided

that the random coefficients have sufficiently short-range correlations so that, among
other properties, their correlation function is integrable. Moreover, the corrector may be
shown to converge in distribution in the space of continuous paths to a Gaussian process,
which may be written as a stochastic integral with respect to Brownian motion. This
result is recalled in Theorem 2.6 below. The work [4] also proposes error estimates for
the corrector in the case of longer-range correlations, when the correlation function of
the random coefficients is no longer integrable. The limiting behavior of the corrector
is however not characterized.

This paper reconsiders the analysis of correctors for the one-dimensional equation
when the correlation function of the random coefficients is no longer integrable, and
more precisely takes the form R(τ) ∼ τ−α as τ → ∞ for some 0 < α < 1. Longer-range
correlations are modeled by smaller values of α. A prototypical example of a continuous,
stationary process with long-range correlation is a normalized Gaussian process gx with
a correlation function Rg(τ) = E{gxgx+τ} that decays as τ−α. The random coefficients
for the elliptic equation we consider in this paper are mean zero stationary processes
that can be written as ϕ(x) = Φ(gx), where Φ is a bounded function. Under appropriate
assumptions on Φ, the correlation function of ϕ also decays as τ−α as τ → ∞.

For the random coefficients described above, we show that the corrector to homog-
enization has an amplitude of order εα and converges in distribution to a Gaussian
process that may be represented as a stochastic integral with respect to a fractional
Brownian motion W H

t with Hurst index H = 1 − α
2
. The limit α → 1 thus converges

to the case of integrable correlation function. Note however that in the limit of very
long-range correlations as α → 0, the influence of the corrector becomes more and more
important. The main tool in our derivation is a careful convergence analysis in distri-
bution of oscillatory integrals of the form

∫ 1

0
K(x, t)ε−

α
2 ϕ( t

ε
)dt to a stochastic integral

with respect to fractional Brownian motion, where K(x, t) is a known kernel and ϕ(t) is
a random process with long-range correlations. This analysis extends weak convergence
results obtained for sums of random variables or for integrals of random processes with
long-range correlations in [12, 9].

The paper is structured as follows. Section 2 presents the heterogeneous and homo-
geneous one-dimensional elliptic equations and describes our hypotheses on the random
coefficients. The section concludes by a statement of Theorem 2.5, which is our main
result. The analysis of random oscillatory integrals of the form

∫ 1

0
F (t)ε−

α
2 ϕ( t

ε
)dt is car-

ried out in section 3. Theorem 3.1 shows their convergence to stochastic integrals with
respect to fractional Brownian motion W H

t . Section 4 shows how the results of section

3 extend to the analysis of the processes of the form
∫ 1

0
K(x, t)ε−

α
2 ϕ( t

ε
)dt that arise in
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the analysis of the correctors to homogenization. The convergence in distribution in
the space of continuous paths of such processes to a Gaussian processes is summarized
in theorem 4.1. The theoretical results are backed up by numerical simulations in sec-
tion 5. After a detailed description of the construction of random processes with given
long-range correlations, we demonstrate the convergence of random oscillatory integrals
and of homogenization correctors to their appropriate limits as stochastic integrals with
respect to fractional Brownian motion. Some concluding remarks are given in section 7.

2 One-dimensional homogenization

2.1 Homogenization problem

We are interested in the solution to the following elliptic equation with random coeffi-
cients

− d

dx

(
a
(x

ε
, ω

) d

dx
uε

)
= f(x), 0 ≤ x ≤ 1, ω ∈ Ω,

uε(0, ω) = 0, uε(1, ω) = q.
(1)

Here a(x, ω) is a stationary ergodic random process such that 0 < a0 ≤ a(x, ω) ≤ a−1
0

a.e. for (x, ω) ∈ (0, 1)×Ω, where (Ω,F , P) is an abstract probability space. The source
term f ∈ W−1,∞(0, 1) and q ∈ R. Classical theories for elliptic equations then show the
existence of a unique solution u(·, ω) ∈ H1(0, 1) P−a.s.

As the scale of the micro-structure ε converges to 0, the solution uε(x, ω) converges
P-a.s. weakly in H1(0, 1) to the deterministic solution ū of the homogenized equation

− d

dx

(
a∗ d

dx
ū
)

= f(x), 0 ≤ x ≤ 1,

ū(0) = 0, ū(1) = q.
(2)

The effective diffusion coefficient is given by a∗ =
(
E{a−1(0, ·)})−1

, where E is mathe-
matical expectation with respect to P. See e.g. [6, 7, 10].

The above one-dimensional boundary value problems admit explicit solutions. In-
troducing aε(x) = a(x

ε
) and F (x) =

∫ x

0
f(y)dy, we have:

uε(x, ω) = cε(ω)

∫ x

0

1

aε(y, ω)
dy −

∫ x

0

F (y)

aε(y, ω)
dy, cε(ω) =

q +

∫ 1

0

F (y)

aε(y, ω)
dy∫ 1

0

1

aε(y, ω)
dy

, (3)

ū(x) = c∗
x

a∗ −
∫ x

0

F (y)

a∗ dy, c∗ = a∗q +

∫ 1

0

F (y)dy. (4)

Our aim is to characterize the behavior of uε − ū as ε → 0.

2.2 Hypothesis on the random process a

In order to characterize the behavior of the corrector uε− ū as ε → 0, we need additional
assumptions on the random process a(x, ω). Let us define the mean zero stationary
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random process

ϕ(x, ω) =
1

a(x, ω)
− 1

a∗ . (5)

Hypothesis [H]. We assume that ϕ is of the form

ϕ(x) = Φ(gx), (6)

where Φ is a bounded function such that∫
Φ(g)e−

g2

2 dg = 0, (7)

and gx is a stationary Gaussian process with mean zero and variance one. The autocor-
relation function of g:

Rg(τ) = E
{
gxgx+τ

}
,

is assumed to have a heavy tail of the form

Rg(τ) ∼ κgτ
−α as τ → ∞, (8)

where κg > 0 and α ∈ (0, 1).

Remark 2.1. This hypothesis is satisfied by a large class of random coefficients. For
instance, if we take Φ = sgn, then ϕ models a two-component medium. If we take
Φ = tanh or arctan, then ϕ models a continuous medium with bounded variations.

The autocorrelation function of the random process a has a heavy tail, as stated in
the following proposition.

Proposition 2.2. The process ϕ defined by (6) is a stationary random process with
mean zero and variance V2. Its autocorrelation function

R(τ) = E{ϕ(x)ϕ(x + τ)} (9)

has a heavy tail of the form

R(τ) ∼ κτ−α as τ → ∞, (10)

where κ = κgV
2
1 ,

V1 = E
{
g0Φ(g0)

}
=

1√
2π

∫
gΦ(g)e−

g2

2 dg , (11)

V2 = E
{
Φ2(g0)

}
=

1√
2π

∫
Φ2(g)e−

g2

2 dg . (12)

Proof. The fact that ϕ is a stationary random process with mean zero and variance
V2 is straightforward in view of the definition of ϕ. In particular, Eq. (7) implies that
ϕ has mean zero.
For any x, τ , the vector (gx, gx+τ )

T is a Gaussian random vector with mean (0, 0)T and
2 × 2 covariance matrix:

C =

(
1 Rg(τ)

Rg(τ) 1

)
.
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Therefore the autocorrelation function of the process ϕ is

R(τ) = E
{
Φ(gx)Φ(gx+τ)

}
=

1

2π
√

det C

∫ ∫
Φ(g1)Φ(g2) exp

(
− gTC−1g

2

)
d2g

=
1

2π
√

1 − R2
g(τ)

∫ ∫
Φ(g1)Φ(g2) exp

(
− g2

1 + g2
2 − 2Rg(τ)g1g2

2(1 − R2
g(τ))

)
dg1dg2 .

For large τ , the coefficient Rg(τ) is small and we can expand the value of the double
integral in powers of Rg(τ), which gives the autocorrelation function of ϕ.

To simplify notation, we no longer write the ω-dependence explicitly and we define
ϕε(x) = ϕ(x

ε
).

2.3 Analysis of the corrector

The purpose of this section is to show that the error term uε − ū has two different
contributions: integrals of random processes with long term memory effects and lower-
order terms. The analysis of integrals of the random processes with long term memory
effects is carried out in the next sections. The following lemma, whose proof can be
found in Section 4.2, provides an estimate for the magnitude of these integrals.

Lemma 2.3. Let ϕ(x) be a mean zero stationary random process of the form (6). There
exists K > 0 such that, for any F ∈ L∞(0, 1), we have

sup
x∈[0,1]

E

{∣∣∣ ∫ x

0

ϕε(t)F (t)dt
∣∣∣2} ≤ K‖F‖2

∞εα . (13)

As a corollary, we obtain the following:

Corollary 2.4. Let ϕ(x) be a mean zero stationary random process of the form (6) and
let f ∈ W−1,∞(0, 1). The solutions uε of (3) and ū of (4) verify that:

uε(x) − ū(x) = −
∫ x

0

ϕε(y)F (y)dy + (cε − c∗)
x

a∗ + c∗
∫ x

0

ϕε(y)dy + rε(x), (14)

where
sup

x∈[0,1]

E{|rε(x)|} ≤ Kεα , (15)

for some K > 0. Similarly, we have that

cε − c∗ = a∗
∫ 1

0

(
F (y) −

∫ 1

0

F (z)dz − a∗q
)
ϕε(y)dy + ρε, (16)

where
E{|ρε|} ≤ Kεα , (17)

for some K > 0.
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Proof. We first establish the estimate for cε − c. We write

cε − c∗ =

∫ 1

0
F (y)

(
1

aε(y)
− 1

a∗

)
dy∫ 1

0
1

aε(y)
dy

+
(
q +

1

a∗

∫ 1

0

F (y)dy
)( 1∫ 1

0
1

aε(y)
dy

− 1
1
a∗

)
,

which gives (16) with

ρε =
a∗∫ 1

0
1

aε(y)
dy

[
(a∗q +

∫ 1

0

F (y)dy)

(∫ 1

0

ϕε(y)dy

)2

−
∫ 1

0

F (y)ϕε(y)dy

∫ 1

0

ϕε(y)dy

]
.

Since
∫ 1

0
1

aε(y)
dy is bounded from below a.e. by a positive constant a0, we deduce from

Lemma 2.3 and the Cauchy-Schwarz estimate that E{|ρε|} ≤ Kεα. The analysis of
uε − ū follows along the same lines. We write

uε(x) − ū(x) = cε

∫ x

0

1

aε(y)
dy −

∫ x

0

F (y)

aε(y)
dy − c∗

x

a∗ +

∫ x

0

F (y)

a∗ dy,

which gives (14) with

rε(x) = (cε − c∗)
∫ x

0

ϕε(y)dy = rε
1(x) + rε

2(x),

where we have defined

rε
1(x) =

[
a∗

∫ 1

0

(
F (y) −

∫ 1

0

F (z)dz − a∗q
)
ϕε(y)dy

][∫ x

0

ϕε(y)dy

]
,

rε
2(x) = ρε

[∫ x

0

ϕε(y)dy

]
.

The Cauchy-Schwarz estimate and Lemma 2.3 give that E{|rε
1(x)|} ≤ Kεα. Besides,

ϕε is bounded by ‖Φ‖∞, so |rε
2(x)| ≤ ‖Φ‖∞|ρε|. The estimate on ρε then shows that

E{|rε
2(x)|} ≤ Kεα.

The previous corollary shows that the error term uε(x) − ū(x) involves integrals of
random coefficients of order εα/2 up to lower-order terms of order εα.

2.4 Homogenization theorem

The results we obtain in the following sections allow for the following characterization
of the correctors.

Theorem 2.5. Let uε and ū be the solutions in (3) and (4), respectively, and let ϕ(x)
be a mean zero stationary random process of the form (6). Then uε − ū is a random
process in C(0, 1), the space of continuous functions on [0, 1]. We have the following
convergence in distribution in the space of continuous functions C(0, 1):

uε(x) − ū(x)

ε
α
2

distribution−−−−−−−→
√

κ

H(2H − 1)
UH(x), (18)
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where

UH(x) =

∫
R

K(x, t)dW H
t , (19)

K(x, t) = 1[0,x](t)
(
c∗ − F (t)

)
+ x

(
F (t) −

∫ 1

0

F (z)dz − a∗q
)
1[0,1](t). (20)

Here 1[0,x] is the characteristic function of the set [0, x] and W H
t is a fractional Brownian

motion with Hurst index H = 1 − α
2
.

The proof of this theorem is postponed to Section 4.3. For the convenience of the
reader, we present a rapid overview of the integration theory with respect to a fractional
Brownian motion. The fractional Brownian motion W H

t is a mean zero Gaussian process
with autocorrelation function

E{W H
t W H

s } =
1

2

(|t|2H + |s|2H − |s − t|2H
)
. (21)

In particular, the variance of W H
t is E{|W H

t |2} = |t|2H . The increments of W H
t are

stationary but not independent for H 
= 1
2
. Moreover, W H

t admits the following spectral
representation

W H
t =

1

2πC(H)

∫
R

eiξt − 1

iξ|ξ|H− 1
2

dŴ (ξ), t ∈ R, (22)

where

C(H) =
( 1

2H sin(πH)Γ(2H)

)1/2

, (23)

and Ŵ is the Fourier transform of a standard Brownian motion W , that is, a complex
Gaussian measure such that:

E
{
dŴ (ξ)dŴ (ξ′)

}
= 2πδ(ξ − ξ′)dξdξ′ .

Note that the constant C(H) is defined such that E{(W H
1 )2} = 1 because we have that

C2(H) =
1

2π

∫
R

|eiξ − 1|2
|ξ|2H+1

dξ .

The integral with respect to the fractional Brownian motion is defined for a large class of
deterministic functions F (see [11] for an extensive review). Functions in L1(R)∩L2(R)
are in the class of integrable functions when H ∈ (1

2
, 1), which is the range of values of

H considered in Theorem 2.5. Using the representation (22), we have, in distribution,
for any F ∈ L1(R) ∩ L2(R),∫

R

F (t)dW H
t =

1

2πC(H)

∫
R

F̂ (ξ)

|ξ|H− 1
2

dŴ (ξ) ,

where the Fourier transform F̂ (ξ) of a function F (t) is defined by

F̂ (ξ) =

∫
R

eitξF (t)dt . (24)
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When F, G ∈ L1(R) ∩ L2(R), the random vector (
∫

R
F (t)dW H

t ,
∫

R
G(t)dW H

t ) is a
mean zero Gaussian vector with covariance

E

{ ∫
R

F (t)dW H
t

∫
R

G(t)dW H
t

}
=

1

2πC(H)2

∫
R

F̂ (ξ)Ĝ(ξ)

|ξ|2H−1
dξ .

As a consequence, in Theorem 2.5, the limit process UH(x) is a mean zero Gaussian
process with autocorrelation function given by

E
{UH(x)UH(y)

}
=

1

2πC(H)2

∫
R

K̂(x, ξ)K̂(y, ξ)

|ξ|2H−1
dξ , (25)

where K̂(x, ξ) is the Fourier transform with respect to t of K(x, t). Finally, using the
notation ∫ x

0

F (s)dW H
t =

∫
R

1[0,x](s)F (s)dW H
t ,

the limit process UH(x) defined by (19) can also be written as

UH(x) = c∗W H
x −

∫ x

0

F (t)dW H
t + x

∫ 1

0

F (t)dW H
t − x

(∫ 1

0

F (z)dz − a∗q
)

W H
1 .

The result of Theorem 2.5 should be contrasted with the convergence result for
processes with short term memory:

Theorem 2.6. Let uε and ū be as in Theorem 2.5 and let ϕ(x) be a mean zero stationary
random process of the form (6). If the correlation function Rg of g is integrable (instead
of being equivalent to τ−α at infinity), then R is also integrable. The corrector uε − ū is
a random process in C[0, 1] and we have the following convergence in C(0, 1)

uε(x) − ū(x)√
ε

distribution−−−−−−−→
(
2

∫ ∞

0

R(τ)dτ
)1/2

U(x), (26)

where

U(x) =

∫
R

K(x, t)dWt, (27)

K(x, t) is given by (20), and Wt is standard Brownian motion.

The limit process U(x) can also be written in the form

U(x) = c∗Wx −
∫ x

0

F (t)dWt + x

∫ 1

0

F (t)dWt − x

(∫ 1

0

F (z)dz − a∗q
)

W1 .

Such a result is based on standard techniques of approximation of oscillatory integrals [8]
and was first derived in [4]. In the next sections, we focus our attention to the analysis of
random variables or random processes defined in terms of integrals of random processes
with long-term memory.
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3 Convergence of random integrals

In this section, we aim at proving the following theorem.

Theorem 3.1. Let ϕ be of the form (6) and let F ∈ L1(R) ∩ L∞(R). We define the
mean zero random variable Mε

F by

Mε
F = ε−

α
2

∫
R

ϕε(t)F (t)dt . (28)

Then the random variable Mε
F converges in distribution as ε → 0 to the mean zero

Gaussian random variable M0
F defined by

M0
F =

√
κ

H(2H − 1)

∫
R

F (t)dW H
t , (29)

where W H
t is a fractional Brownian motion with Hurst index H = 1 − α

2
.

The limit random variable M0
F is a Gaussian random variable with mean zero and

variance

E{|M0
F |2} =

κ

H(2H − 1)
× 1

2πC(H)2

∫
R

|F̂ (ξ)|2
|ξ|2H−1

dξ . (30)

In order to prove Theorem 3.1, we show in Subsection 3.1 that the variance of Mε
F

converges to the variance of M0
F as ε → 0. In Subsection 3.2, we prove convergence in

distribution by using the Gaussian property of the underlying process gx.

3.1 Convergence of the variances

We begin with a key technical lemma.

Lemma 3.2. 1. There exist T, K > 0 such that the autocorrelation function R(τ) of
the process ϕ satisfies

|R(τ) − V 2
1 Rg(τ)| ≤ KRg(τ)2, for all |τ | ≥ T.

2. There exist T, K such that

|E{gxΦ(gx+τ )} − V1Rg(τ)| ≤ KR2
g(τ) for all |τ | ≥ T.

Proof. The first point is a refinement of what we proved in Proposition 2.2: we found
that the autocorrelation function of the process ϕ is

R(τ) =
1

2π
√

1 − R2
g(τ)

∫ ∫
Φ(g1)Φ(g2) exp

(
− g2

1 + g2
2 − 2Rg(τ)g1g2

2(1 − R2
g(τ))

)
dg1dg2 .

For large τ , the coefficient Rg(τ) is small and we can expand the value of the double
integral in powers of Rg(τ), which gives the result of the first item. The proof of the
second item follows along the same lines. We first write

E
{
gxΦ(gx+τ )

}
=

1

2π
√

1 − R2
g(τ)

∫ ∫
g1Φ(g2) exp

(
− g2

1 + g2
2 − 2Rg(τ)g1g2

2(1 − R2
g(τ))

)
dg1dg2 ,
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and we expand the value of the double integral in powers of Rg(τ).
For F ∈ L1(R) ∩ L∞(R), we define the mean zero random variable Mε,g

F by

Mε,g
F = ε−

α
2

∫
R

g t
ε
F (t)dt . (31)

The purpose of this subsection is to determine the limits of the variances of the variables
Mε

F and Mε,g
F .

Lemma 3.3. Let F ∈ L1(R) ∩ L∞(R) and let gx be the Gaussian random process
described in Hypothesis [H]. Then

lim
ε→0

E
{∣∣Mε,g

F

∣∣2} =
κg2

−αΓ(1−α
2

)√
πΓ(α

2
)

∫
R

|F̂ (ξ)|2
|ξ|1−α

dξ . (32)

Proof. We write the square of the integral as a double integral, which gives

E

{∣∣∣ ∫
R

F (y)g y
ε
dy

∣∣∣2} =

∫
R2

Rg

(y − z

ε

)
F (y)F (z)dydz .

This implies the estimate∣∣∣∣E{∣∣Mε,g
F

∣∣2} −
∫

R2

κg

|y − z|α F (y)F (z)dydz

∣∣∣∣
≤

∫
R2

∣∣∣∣ε−αRg

(y − z

ε

) − κg

|y − z|α
∣∣∣∣ |F (y)||F (z)|dydz .

By (8), for any δ > 0, there exists Tδ such that, for all |τ | ≥ Tδ,∣∣Rg(τ) − κgτ
−α

∣∣ ≤ δτ−α .

We decompose the integration domain into three subdomains D1, D2, and D3:

D1 =
{
(y, z) ∈ R2 , |y − z| ≤ Tδε

}
,

D2 =
{
(y, z) ∈ R2 , Tδε < |y − z| ≤ 1

}
,

D3 =
{
(y, z) ∈ R2 , 1 < |y − z|} .

First,∫
D1

∣∣∣∣ε−αRg

(y − z

ε

) − κg

|y − z|α
∣∣∣∣ |F (y)||F (z)|dydz

≤
∫

D1

∣∣∣∣ε−αRg

(y − z

ε

)∣∣∣∣ |F (y)||F (z)|dydz +

∫
D1

κg|y − z|−α|F (y)||F (z)|dydz

≤ 2ε−α‖Rg‖∞
∫

R

∫ Tδε

0

|F (y + z)|dy|F (z)|dz + 2κg

∫
R

∫ Tδε

0

y−α|F (y + z)|dy|F (z)|dz

≤ 2ε−α‖Rg‖∞‖F‖∞‖F‖1

∫ Tδε

0

dy + 2κg‖F‖∞‖F‖1

∫ Tδε

0

y−αdy

≤ ‖F‖∞‖F‖1

(
2TδRg(0) +

2κgT
1−α
δ

1 − α

)
ε1−α ,

10



where we have used the fact that Rg(τ) is maximal at τ = 0, and the value of the
maximum is equal to the variance of g. Second,∫

D2

∣∣∣∣ε−αRg

(y − z

ε

) − κg

|y − z|α
∣∣∣∣ |F (y)||F (z)|dydz ≤ δ

∫
D2

|y − z|−α|F (y)||F (z)|dydz

≤ 2δ‖F‖∞‖F‖1

∫ 1

Tδε

y−αdy

≤ 2δ‖F‖∞‖F‖1

1 − α
,

and finally∫
D3

∣∣∣∣ε−αRg

(y − z

ε

) − κg

|y − z|α
∣∣∣∣ |F (y)||F (z)|dydz ≤ δ

∫
D3

|y − z|−α|F (y)||F (z)|dydz

≤ δ

∫
D3

|F (y)||F (z)|dydz

≤ δ‖F‖2
1 .

Therefore, there exists K > 0 such that

lim sup
ε→0

∣∣∣∣E{∣∣Mε,g
F

∣∣2} −
∫

R2

κg

|y − z|α F (y)F (z)dydz

∣∣∣∣ ≤ K
(‖F‖2

∞ + ‖F‖2
1

)
δ .

Since this holds true for any δ > 0, we get

lim
ε→0

∣∣∣∣E{∣∣Mε,g
F

∣∣2} −
∫

R2

κg

|y − z|α F (y)F (z)dydz

∣∣∣∣ = 0 .

We recall that the Fourier transform of the function |x|−α is

|̂x|−α(ξ) = cα|ξ|α−1 , cα =

∫
R

eit

|t|αdt =

√
π21−αΓ(1−α

2
)

Γ(α
2
)

. (33)

Using the Parseval equality, we find that∫
R2

1

|y − z|α F (y)F (z)dydz =
cα

2π

∫
R

|F̂ (ξ)|2
|ξ|1−α

dξ .

The right-hand side is finite, because (i) F ∈ L1(R) so that F̂ (ξ) ∈ L∞(R), (ii) F ∈
L1(R) ∩ L∞(R) so F ∈ L2(R) and F̂ ∈ L2(R), and (iii) α ∈ (0, 1).

Lemma 3.4. Let F ∈ L1(R)∩L∞(R) and let the process ϕ(x) be of the form (6). Then
we have:

lim
ε→0

E

{
(Mε

F − V1M
ε,g
F )2

}
= 0 .

Proof. We write the square of the integral as a double integral:

E

{
(Mε

F − V1M
ε,g
F )2

}
= ε−α

∫
R2

F (y)F (z)Q(
y

ε
,
z

ε
)dydz ,

11



where
Q(y, z) = E

{
Φ(gy)Φ(gz) − V1Φ(gy)gz − V1gyΦ(gz) + V 2

1 gygz

}
.

By Lemma 3.2 and (8), there exist K, T such that |Q(y, z)| ≤ K|y − z|−2α for all
|x − y| ≥ T . Besides, Φ is bounded and gx is square-integrable, so there exists K such
that, for all y, z ∈ R, |Q(y, z)| ≤ K. We decompose the integration domain R2 into
three subdomains D1, D2, and D3:

D1 =
{
(y, z) ∈ R2 , |y − z| ≤ Tε

}
,

D2 =
{
(y, z) ∈ R2 , T ε < |y − z| ≤ 1

}
,

D3 =
{
(y, z) ∈ R2 , 1 < |y − z|} .

We get the estimates∣∣∣∣∫
D1

F (y)F (z)Q(
y

ε
,
z

ε
)dydz

∣∣∣∣ ≤ K

∫
D1

|F (y)||F (z)|dydz

≤ 2K

∫
R

∫ Tε

0

|F (y + z)|dy|F (z)|dz

≤ 2K‖F‖∞‖F‖1Tε ,∣∣∣∣∫
D2

F (y)F (z)Q(
y

ε
,
z

ε
)dydz

∣∣∣∣ ≤ K

∫
D2

∣∣∣y
ε
− z

ε

∣∣∣−2α

|F (y)||F (z)dydz

≤ 2Kε2α

∫
R

∫ 1

Tε

y−2α|F (y + z)|dy|F (z)|dz

≤ 2K‖F‖1‖F‖∞ε2α

∫ 1

Tε

y−2αdy

≤ 2K‖F‖1‖F‖∞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

1 − 2α
ε2α if α <

1

2

| ln(Tε)|ε if α =
1

2
T 1−2α

2α − 1
ε if α >

1

2∣∣∣∣∫
D3

F (y)F (z)Q(
y

ε
,
z

ε
)dydz

∣∣∣∣ ≤ K

∫
D3

∣∣∣y
ε
− z

ε

∣∣∣−2α

|F (y)||F (z)dydz

≤ 2Kε2α

∫
R

∫ ∞

1

y−2α|F (y + z)|dy|F (z)|dz

≤ 2Kε2α

∫
R

∫ ∞

1

|F (y + z)|dy|F (z)|dz

≤ 2K‖F‖2
1ε

2α ,

which gives the desired result:

lim
ε→0

ε−α

∣∣∣∣∫
R2

F (y)F (z)Q(
y

ε
,
z

ε
)dydz

∣∣∣∣ = 0 .

The following proposition is now a straightforward corollary of Lemmas 3.3 and 3.4
and the fact that κ = κgV

2
1 .
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Proposition 3.5. Let F ∈ L1(R) ∩ L∞(R) and let the process ϕ(x) be of the form (6).
Then we find that:

lim
ε→0

E
{∣∣Mε

F

∣∣2} =
κ2−αΓ(1−α

2
)√

πΓ(α
2
)

∫
R

|F̂ (ξ)|2
|ξ|1−α

dξ . (34)

Remark 3.6. The limit of the variance of Mε
F is (34) and the variance of M0 is

(30). These two expressions are reconciled by using the identity 1 − α = 2H − 1
and standard properties of the Γ function, namely Γ(H)Γ(H + 1

2
) = 21−2H

√
πΓ(2H)

and Γ(1 − H)Γ(H) = π(sin(πH))−1. We get

2−αΓ(1−α
2

)√
πΓ(α

2
)

=
2−2+2HΓ(H − 1

2
)√

πΓ(1 − H)
=

2−2+2HΓ(H + 1
2
)√

π(H − 1
2
)Γ(1 − H)

=
Γ(2H) sin(πH)

π(2H − 1)
.

By (23) this shows that

2−αΓ(1−α
2

)√
πΓ(α

2
)

2π =
1

H(2H − 1)C(H)2
,

and this implies that the variance (30) of M0
F is exactly the limit (34) of the variance

of Mε
F :

lim
ε→0

E
{∣∣Mε

F

∣∣2} = E
{∣∣M0

F

∣∣2} .

3.2 Convergence in distribution

We can now give the proof of Theorem 3.1.
Step 1. The sequence of random variables Mε,g

F defined by (31) converges in distri-
bution as ε → 0 to

M0,g
F =

√
κg

H(2H − 1)

∫
R

F (t)dW H
t .

Since the random variable Mε,g
F is a linear transform of a Gaussian process, it has

Gaussian distribution. Moreover, its mean is zero. The same statements hold true for
M0,g

F . Therefore, the characteristic functions of Mε,g
F and M0,g

F are

E

{
eiλMε,g

F

}
= exp

(
−λ2

2
E

{
(Mε,g

F )2
})

, E

{
eiλM0,g

F

}
= exp

(
−λ2

2
E

{
(M0,g

F )2
})

,

where λ ∈ R. Convergence of the characteristic functions implies that of the distribu-
tions [5]. Therefore, it is sufficient to show that the variance of Mε,g

F converges to the
variance of M0,g

F as ε → 0. This follows from Lemma 3.3.
Step 2: Mε

F converges in distribution to M0
F as ε → 0.

Let λ ∈ R. Since M0
F = V1M

0,g
F , we have∣∣∣E{

eiλMε
F

}
− E

{
eiλM0

F

}∣∣∣ ≤
∣∣∣E{

eiλMε
F

}
− E

{
eiλV1Mε,g

F

}∣∣∣
+

∣∣∣E{
eiλV1Mε,g

F

}
− E

{
eiλV1M0,g

F

}∣∣∣ . (35)
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Since |eix − 1| ≤ |x| we can write∣∣∣E{
eiλMε

F

}
− E

{
eiλV1Mε,g

F

}∣∣∣ ≤ |λ|E{|Mε
F − V1M

ε,g
F |} ≤ |λ|E{

(Mε
F − V1M

ε,g
F )2

}1/2
,

which goes to zero by the result of Lemma 3.4. This shows that the first term of the
right-hand side of (35) converges to 0 as ε → 0. The second term of the right-hand
side of (35) also converges to zero by the result of Step 1. This completes the proof of
Theorem 3.1.

4 Convergence of random processes

Let F1, F2 be two functions in L∞(0, 1). We consider the random process Mε(x) defined
for any x ∈ [0, 1] by

Mε(x) = ε−
α
2

(∫ x

0

F1(t)ϕ
ε(t)dt + x

∫ 1

0

F2(t)ϕ
ε(t)dt

)
. (36)

With the notation (28) of the previous section, we have

Mε(x) = Mε
Fx

= ε−
α
2

∫
R

Fx(t)ϕ
ε(t)dt ,

where
Fx(t) = F1(t)1[0,x](t) + xF2(t)1[0,1](t) (37)

is indeed a function in L1(R) ∩ L∞(R).

Theorem 4.1. Let ϕ be a random process of the form (6) and let F1, F2 ∈ L∞(0, 1).
Then the random process Mε(x) defined by (36) converges in distribution as ε → 0 in
the space of the continuous functions C(0, 1) to the continuous Gaussian process

M0(x) =

√
κ

H(2H − 1)

∫
R

Fx(t)dW H
t , (38)

where Fx is defined by (37) and W H
t is a fractional Brownian motion with Hurst index

H = 1 − α
2
.

The limit random process M0 is a Gaussian process with mean zero and autocorre-
lation function given by

E
{
M0(x)M0(y)

}
=

κ

H(2H − 1)
× 1

2πC(H)2

∫
R

F̂x(ξ)F̂y(ξ)

|ξ|2H−1
dξ . (39)

The proof of Theorem 4.1 is based on a classical result on the weak convergence of
continuous random processes [3]:

Proposition 4.2. Suppose (Mε)ε∈(0,1) are random processes with values in the space of
continuous functions C(0, 1) with Mε(0) = 0. Then Mε converges in distribution to M0

provided that:

14



(i) for any 0 ≤ x1 ≤ . . . ≤ xk ≤ 1, the finite-dimensional distribution (Mε(x1), · · · , Mε(xk))
converges to the distribution (M0(x1), . . . , M

0(xk)) as ε → 0.

(ii) (Mε)ε∈(0,1) is a tight sequence of random processes in C(0, 1). A sufficient condition
for tightness of (Mε)ε∈(0,1) is the Kolmogorov criterion: ∃δ, β, C > 0 such that

E
{∣∣Mε(s) − Mε(t)

∣∣β} ≤ C|t − s|1+δ , (40)

uniformly in ε, t, s ∈ (0, 1).

We split the proof of Theorem 4.1 into two parts: in the next subsection, we prove
the point (i), and next, we prove (ii).

4.1 Convergence of the finite-dimensional distributions

For the proof of convergence of the finite-dimensional distributions, we want to show
that for each set of points 0 ≤ x1 ≤ · · · ≤ xk ≤ 1 and each Λ = (λ1, . . . , λk) ∈ Rk, we
have the following convergence result for the characteristic functions:

E

{
exp

(
i

k∑
j=1

λjM
ε(xj)

)}
ε→0−−−→ E

{
exp

(
i

k∑
j=1

λjM
0(xj)

)}
. (41)

Convergence of the characteristic functions implies that of the joint distributions [5].
Now the above characteristic function may be recast as

E

{
exp

(
i

k∑
j=1

λjM
ε(xj)

)}
= E

{
exp i

(
ε−

α
2

∫
R

ϕε(t)FΛ(t)dt
)}

, (42)

where

FΛ(t) =
( k∑

j=1

λj1[0,xj ](t)
)
F1(t) +

( k∑
j=1

λjxj

)
1[0,1](t)F2(t) .

Since FΛ ∈ L∞(R)∩L1(R) when F1, F2 ∈ L∞(0, 1), we can apply Theorem 3.1 to obtain
that:

E

{
exp

(
i

k∑
j=1

λjM
ε(xj)

)}
ε→0−→ E

{
exp i

(√
κ

H(2H − 1)

∫
R

FΛ(t)dW H
t

)}
,

which in turn establishes (41).

4.2 Tightness

It is possible to control the increments of the process Mε, as shown by the following
proposition.

Proposition 4.3. There exists K such that, for any F1, F2 ∈ L∞(0, 1) and for any
x, y ∈ [0, 1],

sup
ε∈(0,1)

E
{∣∣Mε(y) − Mε(x)

∣∣2} ≤ K
(
‖F1‖2

∞|y − x|2−α + ‖F2‖2
∞|y − x|2

)
, (43)

where Mε is defined by (36).
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Proof. The proof is a refinement of the ones of Lemmas 3.3 and 3.4. We can split
the random process Mε into two components: Mε(x) = Mε,1(x) + Mε,2(x), with

Mε,1(x) = ε−
α
2

∫ x

0

F1(t)ϕ
ε(t)dt , Mε,2(x) = xε−

α
2

∫ 1

0

F2(t)ϕ
ε(t)dt .

We have

E
{∣∣Mε(y) − Mε(x)

∣∣2} ≤ 2E
{∣∣Mε,1(y) − Mε,1(x)

∣∣2} + 2E
{∣∣Mε,2(y) − Mε,2(x)

∣∣2} .

The second moment of the increment of Mε,2 is given by

E
{∣∣Mε,2(y) − Mε,2(x)

∣∣2} = |x − y|2ε−α

∫
[0,1]2

R
(z − t

ε

)
F2(z)F2(t)dzdt .

Since there exists K > 0 such that |R(τ)| ≤ Kτ−α for all τ , we have

ε−α

∫
[0,1]2

R
(z − t

ε

)
F2(z)F2(t)dzdt ≤ K

∫
[0,1]2

|z − t|−α|F2(z)||F2(t)|dzdt

≤ K‖F2‖2
∞

∫ 1

−1

|z|−αdz =
2K

1 − α
‖F2‖2

∞ ,

which gives the following estimate

E
{∣∣Mε,2(y) − Mε,2(x)

∣∣2} ≤ 2K

1 − α
‖F2‖2

∞|x − y|2 .

The second moment of the increment of Mε,1 for x < y is given by

E
{∣∣Mε,1(y) − Mε,1(x)

∣∣2} = ε−α

∫
[x,y]2

R
(z − t

ε

)
F1(z)F1(t)dzdt .

We distinguish the cases |y − x| ≤ ε and |y − x| ≥ ε.
First case. Let us assume that |y − x| ≤ ε. Since R is bounded by V2, we have

E
{∣∣Mε,1(y) − Mε,1(x)

∣∣2} ≤ V2‖F1‖2
∞ε−α|y − x|2 .

Since |y − x| ≤ ε, this implies

E
{∣∣Mε,1(y) − Mε,1(x)

∣∣2} ≤ V2‖F1‖2
∞|y − x|2−α .

Second case. Let us assume that |y−x| ≥ ε. Since R can be bounded by a power-law
function |R(τ)| ≤ Kτ−α we have

E
{∣∣Mε,1(y) − Mε,1(x)

∣∣2} ≤ K‖F1‖2
∞

∫
[x,y]2

|z − t|−αdzdt

≤ 2K‖F1‖2
∞

∫ y

x

∫ y−x

0

t−αdtdz

≤ 2K

1 − α
‖F1‖2

∞|y − x|2−α ,

which completes the proof.
This Proposition allows us to get two results.
1) By applying Proposition 4.3 with F2 = 0 and y = 0, we prove Lemma 2.3.
2) By applying Proposition 4.3, we obtain that the increments of the process Mε

satisfy the Kolmogorov criterion (40) with β = 2 and δ = 1 − α > 0. This gives the
tightness of the family of processes Mε in the space C(0, 1).
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4.3 Proof of Theorem 2.5

We can now give the proof of Theorem 2.5. The error term can be written in the form

ε−
α
2 (uε(x) − ū(x)) = ε−

α
2

(∫ x

0

F1(t)ϕ
ε(t)dt + x

∫ 1

0

F2(t)ϕ
ε(t)dt

)
+ r̃ε(x) ,

where F1(t) = c∗ − F (t), F2(t) = F (t) − ∫ 1

0
F (z)dz − a∗q, and r̃ε(x) = ε−α/2[rε(x) +

ρεa∗−1x]. The first term of the right-hand side is of the form (36). Therefore, by applying
Theorem 4.1, we get that this process converges in distribution in C(0, 1) to the limit
process (19). It remains to show that the random process r̃ε(x) converges as ε → 0 to
zero in C(0, 1) in probability.

We have

E{|r̃ε(x) − r̃ε(y)|2} ≤ 2ε−αE{|rε(x) − rε(y)|2} + 2a∗−2ε−αE{|ρε|2}|x − y|2 ,

From the expression (18) of rε, and the fact that cε can be bounded uniformly in ε by
a constant c0, we get

ε−αE{|rε(x) − rε(y)|2} ≤ 2ε−αc0E

{ ∣∣∣∣∫ y

x

ϕε(t)dt

∣∣∣∣2
}

.

Upon applying Proposition 4.3, we obtain that there exists K > 0 such that

ε−αE{|rε(x) − rε(y)|2} ≤ K|x − y|2−α .

Besides, since ρε can be bounded uniformly in ε by a constant ρ0, we have E{|ρε|2} ≤
ρ0E{|ρε|} ≤ Kεα for some K > 0. Therefore, we have established that there exists
K > 0 such that

E{|r̃ε(x) − r̃ε(y)|2} ≤ K|x − y|2−α ,

uniformly in ε, x, y. This shows that r̃ε(x) is a tight sequence in the space C(0, 1) by the
Kolmogorov criterion (40). Furthermore, the finite-dimensional distributions of r̃ε(x)
converges to zero because

sup
x∈[0,1]

E
{|r̃ε(x)|} ε→0−→ 0

by (15) and (17). Proposition 4.2 then shows that r̃ε(x) converges to zero in distribu-
tion in C(0, 1). Since the limit is deterministic, the convergence actually holds true in
probability.

5 Numerical results for Theorem 2.6

In this section, we numerically study the convergence of the error term in the case where
F = 0, q = 1, and the driving process ϕ(x) has an integrable autocorrelation function.
The solutions of the random elliptic equation (1) and of the homogenized equation (2)
are given by

uε(x) =
1∫ 1

0
1
aε

dy

∫ x

0

1

aε
dy ; ū(x) = x .
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Using the decomposition ϕε = 1
aε

− 1
a∗ and assuming that a∗ = 1, we have

uε(x) =
x +

∫ x

0
ϕε dy

1 +
∫ 1

0
ϕε dy

·

We study the the convergence of the process at the point x = 1
2
, where we have

uε(
1

2
) =

1
2

+
∫ 1

2

0
ϕε dy

1 +
∫ 1

0
ϕε dy

ε→0−→ 1

2
= ū(

1

2
).

5.1 Generation of the driving process

We carry out numerical simulations in the case where the random process ϕ(x) is of the
form Φ(gx) with gx a stationary Ornstein-Uhlenbeck process and Φ(x) = 1

2
sgn(x) (see

Figure 1). This is a simple model for a two-component random medium.
The Ornstein-Uhlenbeck process is the solution of the stochastic differential equation

[5]
dgx = −gxdx +

√
2dWx ,

where Wx is a standard Brownian motion. If we suppose that g0 is a Gaussian random
variable with mean 0 and variance 1 independent of the driving Brownian motion, then
(gx)x≥0 is a stationary, mean zero, Gaussian process with the autocorrelation function
E{gxgx+τ} = exp(−|τ |). Moreover, it is a Markovian process, which makes it easy to
simulate a realization of the Ornstein-Uhlenbeck process (gkΔx)k≥0 sampled at times
(kΔx)k≥0 by the following recursive procedure:
- g0 = G0,
- g(k+1)Δx = e−ΔxgkΔx +

√
1 − e−2ΔxGk+1,

where (Gk)k≥0 is a sequence of independent and identically distributed Gaussian random
variables with mean 0 and variance 1. Note that the simulation is exact independently
of the value of the grid step Δx.

Lemma 5.1. If gx is the stationary Ornstein-Uhlenbeck process and ϕ(x) = 1
2
sgn(gx),

then ϕ(x) is a stationary, mean zero, random process with the autocorrelation function

R(τ) = E{ϕ(x + τ)ϕ(x)} =
1

4

(
1 − 2

π
arctan(

√
e2|τ | − 1)

)
.

Proof. Since g �→ sgn(g) is an odd function, it is obvious that ϕ(x) has mean zero.
Denoting aτ = e−|τ | and bτ =

√
1 − e−2|τ |, the autocorrelation function of ϕ(x) can be
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Figure 1: Simulation of the Ornstein-Uhlenbeck process gx (picture (a)) and the induced
bounded process ϕ(x) = 1

2
sgn(gx) (picture (b)).

computed as follows:

R(τ) = E{Φ(g0)Φ(gτ )} =
1

4
E{sgn(g0)sgn(gτ )}

=
1

4

1

2π

∫
R2

sgn(x)sgn(aτx + bτy) e−
x2+y2

2 dxdy

=
1

4

2

2π

∫
R+×R

sgn(x)sgn(aτx + bτy) e−
x2+y2

2 dxdy

=
1

4π

∫ ∞

0

∫ −π/2+θτ

θ=−π/2

(−1) ρe−
ρ2

2 dθdρ +
1

4π

∫ ∞

0

∫ π/2

θ=θτ

1 ρe−
ρ2

2 dθdρ

=
1

4π
[−θτ + (π − θτ )] =

1

4

(
1 − 2

π
θτ

)
,

with θτ = arctan( bτ

aτ
) = arctan(

√
e2|τ | − 1).

5.2 Convergence of the corrector

We now study the convergence of uε(
1
2
) to ū(1

2
). The value of the integral

∫ 1

0
F (s)ϕε(s) ds

is approximated by the standard quadrature formula∫ 1

0

F (s)ϕε(s) ds =

∫ 1

0

F (s)ϕ
(s

ε

)
ds = ε

∫ 1/ε

0

F (εy)ϕ(y) dy ≈ ε

n∑
i=0

F (iεΔx)ϕ(iΔx)Δx,

with n = [1/(εΔx)] and Δx = 0.1 in our simulations.
We first estimate the convergence order of the variance of (uε − ū)(1

2
) when ε → 0.

The following values are given to ε:

ε ∈ {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.05, 0.1}.
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Figure 2: Picture (a): Variance of (uε − u)(1
2
) as a function of ε, in log-log scale.

The convergence rate of the variance in log log scale has a slope equal to one, which
proves that the convergence is proportional to ε. Picture (b): Normal QQ plot for the

distribution of ε−
1
2 (uε − ū)

(
1
2

)
with ε = 0.0001, which confirms the Gaussian behavior

of the error.

For each ε, we perform 104 simulations and compute the empirical variance. The results
are shown in Figure 2a. The asymptotic theory predicts that the convergence is linear
in ε:

Var
{
uε(

1

2
) − ū(

1

2
)
}

= σ2ε + o(ε) , σ2 = 2a∗

∫ ∞

0

R(τ) dτ ≈ 0.0865.

The computation of a linear regression of the empirical variance with respect to ε, with
the two, three, etc.. first points give 0.0865, 0.0875, 0.0870, which is different from the
theoretical prediction by less than 1%.

We now check the convergence in law of 1√
ε
(uε(

1
2
) − ū(1

2
)). Theorem 2.6 predicts

that
1√
ε

(uε(x) − ū(x))
law−→

(
2

∫ ∞

0

R(τ) dτ

)1/2

U(x),

with U(x) = a∗Wx − a∗xW1, so that in our case

1√
ε

(
uε(

1

2
) − ū(

1

2
)
) law−→ G,

where G is a Gaussian random variable with mean zero and variance

σ2 = 2

∫ ∞

0

R(τ) dτ Var
{U(

1

2
)
}

= 2a∗

∫ ∞

0

R(τ) dτ ≈ 0.0865

In Figure 2b, we compare the distribution of 1√
ε
(uε(

1
2
) − ū(1

2
)) for ε = 10−4 with the

one of G by plotting the normal QQ plot which shows perfect agreement (a normal QQ
plot is a scatter-plot with the quantiles of the sample on the horizontal axis and the
expected normal quantiles on the vertical axis).
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6 Numerical results for Theorem 2.5

6.1 Generation of the driving process

To test the result of Theorem 2.5, we need to generate a Gaussian process with a
heavy tail. We choose to generate the increments of a fractional Brownian motion:
gx = W H

x+1 − W H
x . Since fractional Brownian motion is not a Markovian process, it

cannot be generated iteratively. Many different methods have been developed to simu-
late fractional Brownian motions based on integral representations in terms of standard
Brownian motions, spectral representations, or wavelet decompositions (see the review
[1]). In this paper we use the Choleski method because it is the simplest method to
implement. It is based on the following facts:
1) the fractional Brownian motion W H

x and the process gx are Gaussian processes,
2) the autocorrelation function of the fractional Brownian motion is known (see (21)),
so that it is possible to calculate the covariance matrix C of the Gaussian vector
(gkΔx)k=0,...,N ,
3) if X is a vector of independent and identically distributed random variables with
Gaussian distribution, mean 0, and variance 1, then MX is a mean zero Gaussian
vector with covariance matrix MMT .

The Choleski method consists in
1) computing a square root

√
C of the covariance matrix C of the Gaussian vector

(gkΔx)k=0,...,N ,
2) generating a vector X of N + 1 independent and identically distributed Gaussian
random variables with mean 0 and variance 1,
3) computing the vector

√
CX.

This method is exact, in the sense that the simulated vector
√

CX has the distri-
bution of (gkΔx)k=0,...,N , whatever the grid step Δx may be. The method is, however,
computationally expensive. In fact, only the computation of the square root of the
matrix C is costly. Once this computation has been carried out, it is straightforward
to generate a sequence of independent and identically distributed random vectors with
the distribution of (gkΔx)k=0,...,N .

We apply the Choleski method to generate 105 realizations of the vector (gkΔx)k=0,...,N

with Δx = 1 and N = 2000. The Hurst parameter is equal to 0.8. The empirical auto-
correlation function is shown in Figure 3 and compared with its theoretical asymptotic
behavior τ �→ H(2H − 1)τ 2H−2 [τ → ∞]. When τ becomes large, the fluctuations
become large compared to R(τ) because R(τ) → 0. A linear regression made on the
interval [10, 100] gives the power law fit Ktβ , with K = 0.4901 and β = 0.3964, which
is in agreement with the theoretical values K = 0.48 and β = 0.4.

We suppose that the random medium is described by the stationary random process

1

a(x)
=

9

2
+

8

π
arctan(gx). (44)

The asymptotic behavior of its autocorrelation function is theoretically given by (11)
with

V1 =
1√
2π

8

π

∫ +∞

−∞
xarctan(x)e−

x2

2 dx ≈ 1.6694.
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Figure 3: A series of 105 numerical simulations of the vector (gkΔx)k=0,...,N is carried out
in the case where gx = W H

x+1 −W H
x , H = 0.8, N = 2000, and Δx = 1. Picture (a): The

empirical autocorrelation of gx is compared with the theoretical asymptotic behavior
τ �→ H(2H − 1)τ 2H−2. Picture (b): The empirical autocorrelation of ϕ(x) is compared
with the theoretical asymptotic behavior τ �→ V 2

1 H(2H − 1)τ 2H−2.

The empirical autocorrelation function of the process determined by a series of 105

experiments is shown in Figure 3, where we observe that the theoretical and empirical
curves agree very well.

6.2 Convergence of the corrector

We now study the convergence of the solution of the homogenization problem (1) as
ε → 0. We choose F (x) = x2 and q = 1. For a(x) given by (44), we find that a� = 2

9
. A

solution obtained with a particular realization of the random process with ε = 0.0033
is shown in Figure 4 and compared with the theoretical solution of the homogenized
problem.

We estimate the order of convergence of the variance of the corrector (uε − u)(1
2
)

when ε → 0. The following values are given to ε:

ε ∈ {0.0033, 0.0017, 0.0011, 0.00091, 0.00077, 0.00062, 0.0004}. (45)

For each value of ε, we run 104 numerical experiments, compute the empirical variance
of the corrector, and compare with the asymptotic theoretical variance predicted by
Theorem 2.5:

Var
{
uε(

1

2
) − ū(

1

2
)
}

= σ2
Hε2−2H + o(ε2−2H) (46)

with 2 − 2H = 0.4 and

σ2
H = Var

(√
κ

H(2H − 1)

∫
R

K

(
1

2
, t

)
dW H

t

)
≈ 0.0553.

The results are presented in Figure 5a and show good agreement. More quantitatively,
a linear regression of the logarithm of the empirical variance of the error with respect
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Figure 4: Picture (a) compares the homogenized solution (solid line) with the solution
of (1) obtained for ε = 0.0033 and for a particular realization of the random process ϕ
(circles). Picture (b) plots the difference between uε and ū.
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Figure 5: Picture (a): Empirical variance of (uε−ū)(1
2
) as a function of ε, in log-log scale

(circles), compared with the asymptotic theoretical variance (46) predicted by Theorem
2.5. Picture (b): Normal QQ plot for (uε − ū)

(
1
2

)
with ε = 0.0004, which confirms the

Gaussian behavior of the corrector term.
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to log ε gives:

Var
{
uε(

1

2
) − ū(

1

2
)
} ≈ 0.0581ε0.4041 (47)

which agrees very well with (46). Finally, we can check that the distribution of the
limit process is Gaussian by observing that the normal QQ plot in Figure 5b is indeed
a straight line.

7 Conclusions

We have shown that the corrector to homogenization, i.e., the difference between the
random solution to an elliptic equation with random coefficients and the deterministic
solution to the appropriately homogenized elliptic equation, strongly depends on the
statistics of the random medium. When the correlation function of the random diffusion
coefficient is integrable, such a corrector is of order

√
ε, where ε measures the correlation

length of the random medium. When the correlation function behaves like τ−α, which
measures long-memory effects, then the difference becomes of order ε

α
2 for 0 < α < 1.

The corrector to the homogenized solution may thus be arbitrarily large asymptotically
for very small values of α, which corresponds to pronounced long-memory effects.

Moreover, up to smaller terms of order εα, the corrector to homogenization is a cen-
tered Gaussian process, which may conveniently and explicitly be written as a stochastic
integral with respect to fractional Brownian motion. Such a random behavior of the
corrector may provide an accurate quantitative model for the statistical instability (i.e.,
the dependency with respect to the specific realization of the random medium) of practi-
cal and experimental measurements. This central-limit-type behavior may be extremely
difficult and costly to adequately capture by numerical simulations of the elliptic equa-
tion with random coefficients because of the very large number of random variables
involved in the modeling of a random medium with a small correlation length (ε � 1).

The results presented in this paper are based on the explicit integral representation
(3) of the solution to the one-dimensional elliptic equation (1). Such formulas are not
available in higher space dimensions. Although we are tempted to believe that similar
behaviors will remain valid in higher space dimensions, namely that long-memory effects
will trigger large random corrections to homogenization, this remains a conjecture at
present.
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