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1. Introduction

In the mathematical literature there are now many papers devoted to homogenization of random op-
erators with coefficients being stationary random field (see, for instance, [3] and references therein) and
of operators posed in randomly perforated domain (see [2,3]). But all these results are mainly giving
the convergence of the solutions towards the solution of the limit (or homogenized) equation, without
estimate of the residual. The first successful attempt to give such an estimate is the work of Yurinski [6],
where the expectation of some norm of the residual for the divergence form second-order elliptic random
operator is estimated by a positive power of a small parameterε that characterizes the microscopic length
scale. This power ofε depends only on the dimension of the space, the ellipticity constant and on some
characteristics of the mixing conditions; but this power is implicit and could not be computed explicitly.
Later, similar problems have been studied for symmetric elliptic systems [5]; in this case the residual is
estimated by some negative power of| logε|, which could not, once more, be computed explicitly. The
aim of our paper is to investigate in the one-dimensional case the probabilistic property of the residual.
We assume that the coefficients of the operator is a stationary random field satisfying strong or uniform
mixing condition. The first two sections deal with the case when the corresponding mixing coefficient
decays like a negative power−α of a distance. Namely, in the first part, we suppose thatα > 1, i.e., that
the random variablesa(x, ·) anda(x + d, ·) are weakly dependent for larged. This allows to apply the
central limit theorem. In the second part we study the case when the mixing properties of the random
field are not so good, i.e., whenα 6 1. Finally, in the third part, using large deviation type estimates and
assuming that the mixing coefficient decays like the exponent of some power of the distance, we get more
precise bounds in probability for the fields with such “good” mixing properties. It should be noted that
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we do not state the large (or moderate) deviation principle itself; we prove, in fact, only upper bounds
of moderate deviation type, which are sufficient for our purposes. In this way we obtain estimates of the
discrepancy under much weaker conditions than those required for large or moderate deviation principle.

2. Statement of the problem

We consider the following differential equation in the interval ]0, 1[ with the source termf (x) ∈
L2(0, 1):{ d

dxa
(
ω, xε

) d
dxu

ε = f (x),
uε(0) = 0, uε(1) = 1,

(1)

wherea(ω,y) is a stationary ergodic random process, 0< c1 < a(ω,y) < c2 <∞.
It is well known (see, for instance, [3]) that under these conditionsuε(x) converges asε → 0 in

H1(0, 1) for a.e.ω to u0(x), a purely deterministic solution of the so-called homogenized problem{
ā d2

dx2u
0(x) = f (x),

u0(0) = 0, u0(1) = 1,
(2)

with ā = (E{1/a(ω, 0)})−1, whereE{ ·} denotes the mathematical expectation. Moreover, due to the
only one dimension of the space, the solution of (1) could be computed explicitly:

uε(x) =

∫ x

0

F (s)
a(ω,s/ε)

ds−
[(∫ 1

0

F (s)
a(ω,s/ε)

ds− 1
)/∫ 1

0

ds
a(ω,s/ε)

] ∫ x

0

ds
a(ω,s/ε)

, (3)

where we used the notationF (s) =
∫ s

0 f (z) dz. Let us denote

A(ω,s/ε) =
1

a(ω,s/ε)
− E

{
1

a(ω, 0)

}
, ε > 0. (4)

Our aim is now to find the limiting distribution of (uε − u0). For this, we should estimate the limiting
distribution of all the terms forminguε in (3). To this end, we introduce theσ-algebrasFt = σ{a(ω, t)},
F6t = σ{a(ω,x), x 6 t} andF>t = σ{a(ω,x), x > t} and define the following mixing conditions:

Definition of mixing conditions

Following, respectively, [6], [1] and [4] we give the following definitions:

Definition 2.1. A family of σ-algebrasFt, 06 t 6∞, defined in a probability space (Ω,F ,P ), satisfies
a uniformly strong mixing condition with coefficientϕ(d) = cd−α if the inequality

∣∣E{ ξη} − E{ ξ} E{η}
∣∣ 6 ϕ(d)E

{
ξ2}1/2E

{
η2}1/2

(5)

holds for any random variablesξ andη measurable with respect toF6t and toF>t+d, respectively.
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A family Ft is said to satisfy the strong mixing condition with coefficientφ(d) = cd−α if

∣∣E{ ξη} − E{ ξ} E{η}
∣∣ 6 φ(d) (6)

for anyF6t-measurableξ, |ξ| 6 1, andF>t+d-measurableη, |η| 6 1. A random processXt is said
to satisfy the uniformly strong (respectively, strong) mixing condition if the corresponding family of
σ-algebrasFt = σ(Xt) satisfies the (uniformly) strong mixing condition.

Remark 1. It should be noted that the above mixing conditions are sometimes defined in a slightly
different form as, for instance, in [3, Section 9.2], where:

– a uniformly strong mixing condition with coefficientϕ(d) holds if the inequality

∣∣P(A ∩B)− P(A)P(B)
∣∣ 6 ϕ(d)P(A) (5′)

is valid for anyF6t-measurable eventA and for anyF>t+d-measurable eventB;
– a strong mixing condition with coefficientφ(s) is satisfied if

∣∣P(A ∩B)− P(A)P(B)
∣∣ 6 φ(d). (6′)

These conditions (5′) and (6′) are close but not equivalent to (5) and (6), respectively. However, all the
statements formulated below are valid both under (5) and (5′) (respectively, (6) and (6′)), so in what
follows we will identify these conditions. The coefficientϕ(d) in (5) is sometimes called “maximal
correlation coefficient”.

Moreover, it is clear that condition (6) is weaker than (5).

3. Mixing condition with α > 1

Now, under the assumption thatα > 1 in (5′)–(6′), we estimate the distribution ofuε in (3); namely,
we investigate the distribution of the differenceuε − u0. We start with the term

∫ x
0 A(ω,s/ε) ds and

obtain the first lemma.

Lemma 3.1. Let the processa(ω,s) satisfy either the uniformly strong mixing condition with a coefficient
ϕ(d) = cd−α, α > 1, or the strong mixing condition with a coefficientφ(d) = cd−α, α > 2, and let
A(ω,s) be defined by(4). Then, the distribution of the process

Mε
x(ω) =

1√
ε

∫ x

0
A

(
ω,
s

ε

)
F (s) ds,

as an element of the spaceC(0, 1), converges in law, asε → 0, to the distribution of the Gaussian
martingale

M0
x(ω) =

∫ x

0
σF (s) dws,
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wherews is the standard Wiener process andσ, the variance, is defined as follows:

σ2 = E
{∫ ∞

0
A(ω, 0)A(ω,s) ds

}
.

Proof. This statement is a direct consequence of Theorem 9.6.2 and Lemmas 9.6.2 and 9.6.3 in [4].2

Similarly, the distribution of the process

Y ε
x (ω) =

1√
ε

∫ x

0
A

(
ω,
s

ε

)
ds

in (3) converges in law towards the distribution of the random processσwx. Moreover, the joint distri-
bution ofMε

x andY ε
x converges asε→ 0 to the joint distribution ofM0

x andσwx with the same Wiener
process.

Clearly, the random variables

1√
ε

∫ 1

0
A

(
ω,
x

ε

)
F (s) ds and

1√
ε

∫ 1

0
A

(
ω,
x

ε

)
ds

converge in law, respectively, toM0
1(ω) and toσw1.

By the definitions ofA(ω, t),Mε
x andY ε

x , we have

∫ x

0

F (s) ds
a(ω,s/ε)

=

∫ x

0
E
{

1
a(ω, 0)

}
F (s) ds+

√
εMε

x,

∫ x

0

ds
a(ω,s/ε)

= E
{

1
a(ω, 0)

}
x+
√
εY ε

x .

Substituting these two last relations in (3) and applying Lemma 3.1, we get finally the following result:

Theorem 3.1. The normalized difference(1/
√
ε)(uε − u0) converges in law inC(0, 1), asε → 0, as

folllows:

1√
ε

(
uε − u0) d→M0

x + xM0
1 − σx

∫ 1

0
E
{

1
a(ω, 0)

}
F (s) dsw1 + σ

(∫ 1

0
F (s) ds− 1

)
wx. (7)

Relation (7) implies that the typical deviation ofuε from u0 is of order
√
ε and that for anyδ > 0 the

inequality

P
{

1√
ε

∥∥uε − u0∥∥
C(0,1)>

1
δ

}
6 exp

(
− c

δ2

)
(8)

holds for all sufficiently smallε, with the constantc depending only onσ.
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4. Mixing condition with small α

Now, in order to consider the case when the powerα in (5′) is less than 1 (respectively,α 6 2 in (6′)),
we rescale the space argumenty = x/εβ and denote byAε(x) the rescaled processAε(x) = A(x/εβ)
and byFεt the correspondingσ-algebraσ(Aε(t)). Then, for the processAε(x), the mixing conditions (5′)
and (6′) become∣∣E{ ξη} − E{ ξ} E{η}

∣∣ 6 cεαβd−αE
{
ξ2}1/2E

{
η2}1/2

(9)

for anyFε6t-measurableξ andFε>t+d-measurableη, and, respectively,

∣∣E{ ξη} − E{ ξ} E{η}
∣∣ 6 cεαβd−α (10)

for anyFε6t-measurableξ, |ξ| 6 1, andFε>t+d-measurableη, |η| 6 1.
Now, choosingβ = 1/α − 1 + δ with δ arbitrary small positive number, we get

1
ε

E
{∫ 1

0
Aε(0)Aε

(
s

ε

)
ds
}

=
1
ε

E
{∫ 1

0
A(0)A

(
t

ε1+β

)
dt
}

= εβE
{∫ ε−(1+β)

0
A(0)A(s) ds

}

6 εβ
∫ ε−(1+β)

0
s−α ds 6 εαδ (11)

and, hence,

lim
ε→0

1
ε

E
{∫ 1

0
Aε(0)Aε

(
s

ε

)
ds
}

= 0. (12)

To prove the next assertion, one can use (12) and a very simplified version of the proof of Theo-
rem 9.6.2 and Lemmas 9.6.2 and 9.6.3 in [4] (see, also, the proof of Lemma 4.2 below).

Lemma 4.1. Under either the uniform strong mixing condition(5′) with φ(d) = cd−α, α 6 1, or the
strong mixing condition(6′) with φ(d) = cd−α, α 6 2, the family of processes

ηεx(ω) =
1√
ε

∫ x

0
F (s)Aε

(
s

ε

)
ds =

1√
ε

∫ x

0
F (s)A

(
s

ε1+β

)
ds

converges in probability in the spaceC(0, 1), asε→ 0, to the processηx(ω) ≡ 0.

Remark 2. The statement of Lemma 4.1 could be read as follows: the family of measuresQε generated
in the spaceC(0, 1) by the processηεx(ω) converges weakly, asε→ 0, to aδ-type measure concentrated
on the functionηx ≡ 0.

By Lemma 4.1, introducing a new small parameterε = µ1+β, with β defined as above, in the same
way as in Lemma 3.1 we find

lim
ε→0

P
{

max
x

∣∣∣∣ 1
εα/2−δ

∫ x

0
F (s)A

(
s

ε

)
ds
∣∣∣∣ > C

}
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= lim
µ→0

P
{

max
x

∣∣∣∣ 1
µ(α/2−δ)(β+1)

∫ x

0
F (s)A

(
s

µ1+β

)
ds
∣∣∣∣ > C

}

= lim
µ→0

P
{

max
x

∣∣∣∣ 1

µ1/2−δ(1/α−α/2)−δ2

∫ x

0
F (s)A

(
s

µ1/α+δ

)
ds
∣∣∣∣ > C

}
= 0 (13)

for anyC > 0 and any small positive numberδ.
Using representation (3) foruε, a similar representation foru0 and applying the same arguments as in

Theorem 3.1, we deduce from (13) the following convergence result.

Theorem 4.1. For anyC > 0 and any small positiveδ, the relation

lim
ε→0

P
{

max
x

∣∣uε − u0∣∣ > Cεα/2−δ
}

= lim
ε→0

P
{

max
x

∣∣∣∣uε − u0

εα/2−δ

∣∣∣∣ > C

}
= 0 (14)

holds.

Our next step is to estimate the expectation of maxx |uε(x)−u0(x)| = ‖uε−u0‖C(0,1) for smallε. For
this aim we prove the following lemma.

Lemma 4.2. If the uniform strong mixing condition(5′) with ϕ(d) = cd−α is satisfied, then, according
to the range ofα, we have

E
{

max
x

(
uε(x)− u0(x)

)2} 6

c(α)ε for α > 1,
cε| ln ε| for α = 1,
c(α)εα for α < 1.

(15)

If the strong mixing condition(6′) with φ(d) = cd−α is satisfied, then

E
{

max
x

(
uε(x)− u0(x)

)2} 6 { c(α)ε for α > 2,
c(α)εα/2 for α 6 2.

(16)

Proof. We consider the case when (5′) holds withϕ(d) = cd−α andα > 1. The other cases can be
studied in the same way.

First of all, let us represent the integral
∫ 1

0 F (s)A(s/ε) ds in the following form:

∫ 1

0
F (s)A

(
s

ε

)
ds = ε

∫ 1/ε

0
F (εs)A(s) ds = ε

1/(2
√
ε)∑

k=0

η2k + ε

1/(2
√
ε)∑

k=0

η2k+1,

where

ηk =

∫ (k+1)/
√
ε

k/
√
ε

F (εs)A(s) ds, (17)

and define the processesξ′n =
∑n
k=0 η2k andξ′′n =

∑n
k=0 η2k+1.
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Due to the uniform boundedness ofF (s) andA(ω,s) and the fact that the length of the integration
intervals in (17) is 1/

√
ε, in order to obtain the first estimates in (15), it suffices to prove that

E
{
ε2 max

n61/2
√
ε

(
ξ′n

2
+ ξ′′n

2)} 6 cε. (18)

To this end we define a random variableζk = E{η2k|F6(2k−1)/
√
ε}, whereE{ ·|H} stands for the con-

ditional expectation with respect to theσ-algebraH, and note that in view ofF6(2k−1)/
√
ε-measurability

of ζk, condition (5′) with d = 1/
√
ε implies the inequality

E
{
ζ2
k

}
= E

{(
E{η2k|F6(2k−1)/

√
ε}
)2}

= E
(
E{ ζkη2k|F6(2k−1)/

√
ε}
)

= E{ ζkη2k} 6 ϕ
(

1√
ε

)(
E
{
ζ2
k

})1/2(E{η2
2k
})1/2

.

Therefore,

E
{
ζ2
k

}
6 ϕ2

(
1√
ε

)
E
{
η2
k

}
6 c2εαE

{
η2
k

}
. (19)

The next step is to estimate the expectation ofη2
2k andξ′n

2. Denote byR(s) the correlation function
E{A(ω, 0)A(ω,s)} of the processA(ω,s). Clearly, under condition (5′) or (6′), R(s) 6 c|s|−α, and we
find

E
{
η2

2k
}

= E
{(∫ (2k+1)/

√
ε

(2k)/
√
ε

F (εs)A(s) ds
)2}

=

∫ 1/
√
ε

0

∫ 1/
√
ε

0
F

(
ε

(
s+

2k√
ε

))
F

(
ε

(
t+

2k√
ε

))
R(t− s) dsdt

6 c
∫ 1/

√
ε

0

∫ 1/
√
ε

0
R(t− s) dsdt 6 c√

ε
, (20)

where the inequalityα > 1 has also been used. Hence,

E
{
(εη2k)

2} 6 cε3/2. (21)

Similarly,

E
{(
εξ′n
)2} 6 cε, n = 0, 1, 2,. . . ,

1
2
√
ε
. (22)

From (19) and (21),

E
{
(εζk)

2} 6 cεα+3/2. (23)
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Summing the last inequalities overk 6 1/(2
√
ε), we obtain

E

{( 1/(2
√
ε)∑

k=1

εζk

)2}
6 1

2
√
ε

E

{ 1/(2
√
ε)∑

k=1

(εζk)
2

}
6 1

4ε
cεα+3/2 = cεα+1/2. (24)

Similarly,

E

{(
n∑
k=1

εζk

)2}
6 cεα+1/2, 06 n 6 1

2
√
ε

, (25)

wherec does not depend onn.

Now, estimating {maxn61/(2
√
ε)(
∑n
k=1 εζk)

2} by the sum {
∑1/(2

√
ε)

n=0 (
∑n
k=1 εζk)

2}, we deduce from
(25) the following relation:

E

{
max

n61/(2
√
ε)

(
n∑
k=1

εζk

)2}
6 cεα. (26)

By the definition ofζk, the processNn =
∑n
k=1 ε(η2k−ζk) is a martingale. Thus, by the Doob inequality

for martingales [4, Section 1.9], from (22) and (26) we have

E

{
max

n61/(2
√
ε)

(
n∑
k=1

ε(η2k − ζk)
)2}

6 4E

{( 1/(2
√
ε)∑

k=1

ε(η2k − ζk)
)2}

6 8

[
E

{( 1/(2
√
ε)∑

k=1

εη2k

)2}
+ E

{( 1/(2
√
ε)∑

k=1

εζk

)2}]
6 c

(
ε+ εα

)
.

Finally, in view of (26), the last inequality implies

E
{

max
n61/(2

√
ε)

(
εξ′n
)2} 6 2E

{
max

n61/(2
√
ε)

(
n∑
k=1

ε(η2k − ζk)
)2

+ max
n61/(2

√
ε)

(
n∑
k=1

εζk

)2}
6 cε.

The estimate forξ′′n can be obtained in the same way, and then the lemma is proved.2

Now, from Lemma 4.2, applying the Chebyshev inequality, we get the upper bound for the probabilities
P{maxx |uε(x)− u0(x)| > εγ}, 0 < γ < 1/2:

Corollary 4.1. Under the uniform strong mixing condition(5′) with ϕ(d) = cd−α, depending on the
value ofα, we have

P
{

max
x

∣∣uε(x)− u0(x)
∣∣ > εγ

}
6

 c(α)ε1−2γ if α > 1, ∀γ < 1/2,
cε1−2γ | ln ε| if α = 1, ∀γ < 1/2,
c(α)εα−2γ if α < 1, ∀γ < α/2.



A. Bourgeat and A. Piatnitski / Residual estimates in random homogenization 311

Under the strong mixing condition(6′) with φ(d) = cd−α, depending on the value ofα, we have

P
{

max
x

∣∣uε(x)− u0(x)
∣∣ > εγ

}
6
{
c(α)ε1−2γ if α > 2, ∀γ < 1/2,
c(α)εα/2−2γ if α 6 2, ∀γ < α/4.

5. Exponential estimates and moderate deviation principle

The estimates of the previous sections are applicable in rather general cases, but they are not always
sharp enough, specially when the mixing coefficient decays rapidly. In that case more precise estimates
can be obtained. In order to characterize a proper class of processes, below we define the moderate
exponential mixing conditionsMκ which are a slightly weakened version of the conditionsF κ in [1,
Section 7.7].

Definition 5.1. We say that a family of processesζεt satisfies the moderate exponential mixing conditions
Mκ if

lim sup
ε→0

ε1−2κ ln
[

max
06x61

E
{

exp
∣∣∣∣εκ−1

∫ x

0
ζεt dt

∣∣∣∣}] <∞. (27)

For the reader convenience, we recall the definition of moderate deviation conditionsF κ (see [1,
Section 7.7]).

Definition 5.2. The moderate deviation conditionF κ is satisfied if there is a continuous positive function
C(s) such that for any step functionψ(s) the relation

lim
ε→0

ε1−2κ ln E
{

exp
(
εκ−1

∫ x

0
ψ(s)ζεt dt

)}
=

1
2

∫ 1

0
C(s)ψ2(s) ds (28)

holds, and if there exists a positive functionθ(t), limt→0 θ(t) = 0, andt0 > 0 such that

lim sup
ε→0

max
ε6t<t0

06h61−t

ε1−2κ ln
∣∣∣∣E{exp

(
±ε

κ−1

θ(t)

∫ h+t

h
ζεt dt

)}∣∣∣∣ <∞. (29)

The next lemma will be a basic tool in obtaining exponential estimates of the probabilities
P
{

max06x61 |uε(x)− u0(x)| > cεκ
}
.

Lemma 5.1. Let a processζεt satisfy the conditionMκ, 0< κ < 1/2. Then, there arec0 > 0 andc1 > 0
such that the estimate

P
{

max
06t61

∣∣∣∣ ∫ t

0
ζεs ds

∣∣∣∣ > c0ε
κ
}
6 exp

(
−c1ε

2κ−1) (30)

is valid for all sufficiently smallε.
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Proof. Let us first remark that the conditionMκ implies, for all sufficiently smallε, the uniform in
x ∈ (0, 1) inequality

E
{

exp
∣∣∣∣εκ−1

∫ x

0
ζεt dt

∣∣∣∣} < exp
(
Cε2κ−1). (31)

Let us denoteξεt =
∫ t

0 ζ
ε
s ds; now, by the exponential Chebyshev inequality and (31), we get

P
{∣∣ξεt ∣∣ > c0ε

κ}= P
{ ∣∣ξεt ∣∣
ε1−κ > c0ε

2κ−1
}

= P
{

exp
( ∣∣ξεt ∣∣
ε1−κ

)
> exp

(
c0ε

2κ−1)}

6 exp
(
−c0ε

2κ−1)E{exp
( ∣∣ξεt ∣∣
ε1−κ

)}
6 exp

(
(C − c0)ε2κ−1)

uniformly in x ∈ (0, 1), for all sufficiently smallε. Under proper choice ofc0 this implies the statement
of Lemma 5.1. 2

Applying this last lemma to each term on the right-hand side of (3), we obtain the following

Corollary 5.1. Let bothA(s/ε) andF (s)A(s/ε) satisfy the conditionMκ for someκ, 0 < κ < 1/2.
Then, there are constantsc0 > 0 andc1 > 0 such that the inequality

P
{

max
06x61

∣∣uε(x)− u0(x)
∣∣ > c0ε

κ
}
6 exp

(
−c1ε

2κ−1) (32)

holds for all sufficiently smallε.

Proof. If we setxk = kεκ, k = 1, 2,. . . , 1/εκ, then, in view of the uniform boundedness ofA(s) and
F (s), we get

max
06x61

∣∣∣∣ ∫ x

0
F (s)A

(
s

ε

)
ds
∣∣∣∣ 6 max

k

∣∣∣∣ ∫ xk

0
F (s)A

(
s

ε

)
ds
∣∣∣∣+ cεκ.

By Lemma 5.1, using the evident inequality

P
{

max
k

∣∣∣∣ ∫ xk

0
F (s)A

(
s

ε

)
ds
∣∣∣∣ > c0ε

κ
}
6
∑
k

P
{∣∣∣∣ ∫ xk

0
F (s)A

(
s

ε

)
ds
∣∣∣∣ > c0ε

κ
}

,

we obtain the desired estimate.2

Remark 3. It should be noted that under a moderate deviation conditionF κ, not only the estimate
of Lemma 5.1 could be obtained, but also the exact logarithmic asymptotics for the probability that
εκξεt = εκ

∫ x
0 ζ

ε
s ds belongs to a small neighbourhood of any absolutely continuous function. Namely,

for any absolutely continuous functiong(·) and anyδ > 0 we have for all sufficiently smallε:

exp
(
−S(g(·)) + δ

ε1−2κ

)
6 P

{
max

06x61

∣∣εκξεt − g(t)∣∣ 6 δ} 6 exp
(
−S(g(·)) − δ

ε1−2κ

)
;
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here the rate functionS(g(·)) associated to the processεκξεt is defined by the formula (see [4, Section 7.7,
Theorem 7.1])

S
(
g(·)
)

=

∫ 1

0
C−1(s)

(
ġ(s)

)2
ds.

6. Exponential estimates. Examples

Most of the results of previous sections are based on assumptions that, in general, could not be easily
verified. In this section we give several sufficient conditions that provide a moderate exponential mixing
Mκ and we derive some consequences from Lemma 5.1.

Proposition 6.1. Suppose that the processa(ω,s) satisfies condition(5) or (6) and that the correspond-
ing coefficientϕ(d) (or φ(d)) satisfies the estimate

ϕ(d) 6 exp
(
−cds

)
(33)

for somes > 1 and c > 0. Then, for allκ, 1/(1 + s) < κ < 1/2, both the processesA(s/ε) and
F (s)A(s/ε) satisfy the moderate mixing conditionMκ.

Proof. We rewrite the integralεκ−1 ∫ 1
0 F (s)A(s/ε) ds in the following form:

εκ−1
∫ 1

0
F (s)A(s/ε) ds = εκ

∫ 1/ε

0
F (εs)A(s) ds =

εκ−δ−1/2∑
k=0

η2k +

εκ−δ−1/2∑
k=0

η2k+1 = ξ′ + ξ′′,

where

ηk = εκ
∫ (k+1)εδ−κ

kεδ−κ
F (εs)A(s) ds.

DenotingN (ε) = (εκ−δ−1/2), from (5′) and the relationκ > 1/(1 + s) we have∣∣∣E{exp(2ξ′)
}
− E

{
exp(2η0)

}
E
{
exp(2η2 + 2η4 + · · · + 2η2N (ε))

}∣∣∣
=
∣∣∣E{exp(2η0)

(
exp(2η2 + 2η4 + · · ·+ 2η2N (ε))− E

{
exp(2η2 + 2η4 + · · ·+ 2η2N (ε))

})}∣∣∣
6 ϕ

(
εδ−κ

)(
E
{
exp(4η0)

})1/2(E{exp(4η2 + 4η4 + · · ·+ 4η2N (ε))
})1/2

6 C exp
(
−cεs(δ−κ))exp

(
c′εκ−1) 6 C exp

(
c′εκ−1− cεs(δ−κ)) 6 C exp

(
−(c/2)εs(δ−κ))

for all sufficiently smallε.
Iterating this inequality, we find∣∣∣∣∣E{exp(2ξ′)

}
−
N (ε)∏
k=0

E
{
exp(2ηk)

}∣∣∣∣∣ 6 C exp
(
−(c/2)εs(δ−κ)). (34)
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Then, taking into account the exponential decay ofϕ(d), in the same way as in Lemma 4.2, we obtain

E{2ηk} = 0, E
{
(2ηk)2} 6 cεκ+δ, E

{
(2ηk)n

}
6 cnεn(κ+δ)/2, n = 3, 4,. . . . (35)

Thus, taking sufficiently large number of terms in the Taylor expansion

exp(2ηk) = 1 + 2ηk + (2ηk)
2/2 + · · · ,

we have

ln
(
E
{
exp(2ηk)

})
6 cεκ+δ.

Summing up overk 6 (εκ−δ−1/2) gives

ε1−2κ ln

(
N (ε)∏
k=0

E
{
exp(2η2k)

})
6 ε1−2κN (ε)cεκ+δ 6 c. (36)

Similar estimate can be obtained for the odd terms. Finally, by (34), (36) and the Cauchy–Bunyakovski
inequality, we get

ε1−2κ ln E
{
exp(ξ′ + ξ′′)

}
6 ε1−2κ1

2

(
ln E

{
exp(2ξ′)

}
+ ln E

{
exp(2ξ′′)

})
6 c.

The case of strong mixing condition can be studied in the same way and proposition is proved.2

In fact, the above arguments can be used to consider the case of smaller powers in (33) as well. Indeed,
after introducing a processAε(t) = F (t)A(t/εβ ), one can prove the following assertion exactly in the
same way as Proposition 6.1.

Proposition 6.2. Suppose that the processa(s,ω) satisfies condition(5′) or (6′) and that estimate(33)
holds for somes > 0 and c > 0. Then for anyβ > (1 + s)/(2s) and for anyκ, max(0, 1− sβ/(1 +
s)) < κ < 1/2, both processesA(s/εβ) and F (s)A(s/εβ) satisfy the moderate exponential mixing
conditionMκ.

Now, using the new small parameterµ = ε1/β we deduce from the last proposition the following

Proposition 6.3. Suppose that the processa(s,ω) satisfies condition(5) or (6) and that estimate(33)
holds for somes > 0 andc > 0. Then, for anyβ > (1 + s)/(2s) and anyκ, max(0, 1/β − s/(1 + s)) <
κ < 1/(2β), there are positive constantsc0 andc1 such that

P
{

max
06t61

∣∣∣∣ ∫ t

0
F (s)A

(
s

µ

)
ds
∣∣∣∣ > c0µ

κ
}
6 exp

(
−c1µ

2κ−(1/β)). (37)

Applying now Propositions 6.1–6.3 to each term on the right-hand side of (3), we deduce the following
assertion:
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Theorem 6.1. Let the processa(t,ω) satisfy condition(5) or (6) with the coefficientϕ(d) (φ(d)) obeying
estimate(33) for somes > 0 andc > 0. If s > 1, then for anyκ ∈ (1/(s+ 1), 1/2) there arec0 > 0 and
c1 > 0 such that for all sufficiently smallε,

P
{

max
06x61

∣∣uε(x)− u0(x)
∣∣ > c0ε

κ
}
6 exp

(
c1ε

1−2κ);
and if 0 < s 6 1, then for eachβ > (1 + s)/(2s) and eachκ, max(0, 1/β − s/(1 + s)) < κ < 1/(2β),
there are strictly positive constantsc0 andc1 such that for any sufficiently smallε,

P
{

max
06x61

∣∣uε(x)− u0(x)
∣∣ > c0ε

κ
}
6 exp

(
−c1ε

2κ−(1/β)).
Remark 4. If the distribution ofa(t,ω) has a finite correlation lengthL, then for anyd > L estimate
(33) trivially holds for anys > 0.
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