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In two previous papers, a new probabilistic approach has been developed for data assimilation
into nonlinear dynamical systems. The new method employs a mean-field approximation to the
conditioning upon observational data and moment-closure approximation to the evolution of proba-
bilities between measurements. In this final paper of the series, fast, robust, and efficient algorithms
are described for practical application of the method, exploiting its underlying variational structure.
Direct minimization of the convex cost function by a conjugate-gradient algorithm is guaranteed
to converge. Such descent methods are used as part of fast, hybrid algorithms which switch over
to solving Euler-Lagrange equations by Newton relaxation. These algorithms are illustrated on a
simple nonlinear model with bimodal statistics. In the simple test problem, the new statistical-
mechanical variational methods give results much faster than empirical-ensemble methods. Storage
requirements are also very substantially reduced. It is argued that these advantages of the mean-field
closure methods are likely to persist for large-scale geophysical systems, particularly if first-order

moment closures are employed.

PACS numbers: 92.60.Ry, 92.60.Wc, 93.65.4e, 92.70.-j, 02.50.-r

I. INTRODUCTION

This paper is the third and final in a series present-
ing a new probabilistic approach to data assimilation
and inverse modeling for large-scale nonlinear stochastic
dynamical systems. Data from observations change the
prior distributions calculated from such a model. The
probabilities conditioned on the data then represent the
optimal information one can hope to have about the state
of the system. The calculation of the conditional prob-
abilities involves two steps: the evolution of the proba-
bilities by the dynamics between measurements and the
determination of posterior probabilities given the data
(and an error model) by Bayes formula. The latter is
traditionally called the analysis step in data assimilation
for meteorological forecasting. In our first paper, Eyink
et al. [1] hereafter denoted I, we discussed this general
framework and, primarily, developed a mean-field ap-
proximation to the analysis or conditioning step of the
calculation. It was shown that this mean-field condi-
tional analysis can be obtained by the minimization of
nonnegative, convex cost functions, either the multi-time
relative entropy, which depends upon the state only at
the measurement times, or the effective action, which
is a functional of the entire state-history continuous in
time. In the second paper of the series, Eyink et al. [2]
hereafter denoted as II, we considered instead approx-
imations to the dynamical evolution between measure-
ments. The method most specifically developed there was
a moment-closure or Rayleigh-Ritz scheme based upon a

variational formulation of the Kolmogorov equations to
evolve the probabilities. We discussed in general how to
calculate the multi-time relative entropy and the effec-
tive action within moment-closure schemes which make
trial guesses for the solutions of the Kolmogorov equa-
tions. Especially attractive features were shown to exist
for entropy-based closures which preserve an exact H-
theorem for the (single-time) relative entropy.

In this final paper of the series we discuss in detail the
numerical implementation of the new methods advanced
in I and II, based upon moment-closure approximation of
the dynamical evolution and the mean-field conditional
analysis. In fact, the methods cannot be considered to be
formulated completely without a specification of the nu-
merical algorithms necessary to implement them on the
computer. The latter determine not only the accuracy
of the results, but also the speed and efficiency of the
computation. These factors are decisive in distinguish-
ing between a method which is useful only in principle
and one which can, in fact, be affordably applied. This is
especially true for the large-scale, spatially-extended sys-
tems that are relevant in the geosciences. For real-time
forecasting in meteorology the speed of the computation
is essential. For other applications, such as inverse mod-
eling in physical oceanography or climatology, the con-
straints on speed may be less severe, but still a result
should be obtainable in at most a matter of weeks, not
years. Efficiency of the calculation in terms of require-
ments on memory and—in a parallel implementation—
communication, are also relevant factors. Variational as-



similation methods of the type currently practiced for
large-scale geophysical applications already threaten to
overwhelm even the largest storage capabilities of com-
puter facilities [see 3, 4]. It is important that the vari-
ational methods proposed here impose storage require-
ments at least no greater than those conventionally em-
ployed.

For this work we have therefore developed and utilised
algorithms with an eye toward eventual application of
the methods to large-scale geophysical systems. The test
problem studied here is the same one-variable stochastic
ODE considered in I and II, a double-well model with bi-
modal statistics considered in Miller et al. [5] and Miller
et al. [6]). In this case, brute force methods could be
employed that would not be feasible in a genuine appli-
cation. However, we developed instead faster and more
efficient methods that could be applied to more realistic
systems. For example, in our variational approach, the
variance of the estimated time-history is given by the di-
agonal elements of the inverse Hessian of the minimized
cost function (relative entropy or effective action). This
Hessian is a matrix of order at most only a few hundred in
the simple test problem, and it could be easily calculated
and inverted. However, in a realistic application its order,
if it were calculated naively, would be the total number of
spacetime points used in the computation of the model
and that could be enormous. We have used an impor-
tant theorem of large deviations theory, the Contraction
Principle [see 7], to calculate the desired variance in a
simpler way. First, we can reduce the order of the Hes-
sian to just the number of spacetime points at which the
variance is required, not the full number used in the com-
putation of the model. Second, we can avoid any matrix
inversion whatsoever by performing instead a sequence
of constrained minimizations. (See section 2.2.1). This
is just one example of the type of tailored algorithm that
we have employed to make our method more feasible to
apply. These include also an efficient minimax algorithm,
simplifying variable transformations, adjoint algorithms
for calculating derivatives, etc. These are described in
the text in sufficient detail that a reader should be able
to reproduce all of the results obtained by them which
are reported here and in II.

Our new methods are compared in this paper for speed
and efficiency with the empirical-ensemble methods that
were also the basis of comparison in IT (there for the ac-
curacy of the computed conditional statistics). The en-
semble methods have been extensively developed in the
last several years by G. Evensen and his collaborators:
see Evensen [8], van Leeuwen and Evensen [9], Burgers
et al. [10], Evensen and van Leeuwen [11]. See Tippett
et al. [12] for more recent developments. These meth-
ods approximate the dynamical evolution of the statistics
by integrating the primitive equations of motion for N-
sample ensembles, with N on the order of 100 or so. As
currently practiced, the ensemble methods employ a lin-
ear analysis borrowed from Kalman filtering and smooth-
ing, but which is only an approximation for nonlinear

dynamics with non-Gaussian statistics. We shall present
evidence to convince the reader that our new methods
are competitive, at least, with the ensemble methods in
terms of computational speed and efficiency. In certain
respects the present methods are even superior and these
advantages are scalable in the size of the computation.
We expect therefore that the present methods can be a
useful complement to the existing ensemble methods, and
will allow an independent check of results where both can
be applied. Since both methods make some uncontrolled
approximations in calculating the conditional statistics,
using such methods in parallel would provide the most
reliable results.

The detailed contents of this paper are as follows: In
Section 2 we discuss the numerical implementation of
our methods, in several versions. First, in subsection
2.1 we consider two methods which use the exact con-
ditional analysis but a second-order moment-closure for
the dynamics. One of these, KSP-2LL, employs a lin-
ear ansatz for the solution of the backward Kolmogorov
equation and the second, KSP-2DE, employs exponential
ansitze for the solutions of both forward and backward
equations. It is shown that the first of these leads to a
realizability breakdown, but the corresponding filtering
approximation, KS-2E, is sound. Next, in subsection 2.2
we discuss the various methods based upon the mean-
field variational analysis, both with first-order closure
(MFV-1LL,MFV-1DE) and second-order closure (MFV-
2LL,MFV-2DE). The methods using the linear ansatz for
the solution of the backward equation (MFV-1LLMFV-
2LL) are also found to suffer from realizability problems,
but less severe than for the KSP closure. In the subsec-
tion 2.3 we briefly discuss the implementation of the en-
semble methods, the filter EnKF and smoother EnKS. In
Section 3 of the paper we present our comparisons of the
methods in terms of run times, rates of convergence, and
storage requirements. Section 4 contains our final dis-
cussion and summary. In an Appendix we consider some
technical, but important, details of the computational
algorithms: use of dual thermodynamic variables, cu-
mulants and their generating functions, and variational-
based discretization schemes.

II. ESTIMATION SCHEMES AND
ALGORITHMS

Moment-closure approximations to the estimation
problem were discussed in II for two different approaches
to the analysis step: exact conditional analysis and a
mean-field conditional analysis. In this section, we give
a brief summary of the various approximate estimation
schemes that were proposed and studied in II. For each
method we give a complete description of the compu-
tational problem involved in calculating the estimated
history and its variance, as well as details of how we im-
plemented that method numerically.

Integrating the forward-backward closure equations



11(8),(9) or I1(25),(26) is the base-level problem that
must be solved in all of our algorithms. In the Appendix
we shall give some details of how we accomplished that in-
tegration. Aside from relatively straightforward numer-
ical analysis, there were several less obvious steps that
were taken. First, the equations were reformulated in
a new set of variables, rather than the variables (o, p)
in terms of which they were written in II. Second, the
individual terms in the equations were calculated by a
method that exploits the cumulant-generating function
for the exponential PDF ansatz. Third, the numerical
integration scheme for the equations was generated from
a discretization of the associated action functional, guar-
anteeing a structurally consistent method. Each of these
matters is discussed in turn in the Appendix.

In addition, we shall describe briefly in this section our
numerical implementation of ensemble methods which
employ the linear analysis of I, section 3.2. These are the
primary methods of comparison for our moment-closure
schemes in IT and in section 3 of this paper.

A. KSP Closure Methods

Methods of this type keep the exact conditional anal-
ysis of the jump conditions, I(8), (10), but employ a
moment-closure of the KSP forward-backward evolution
equations I(7),(9). Such methods yield approximations
to the functions Pr(x,t) and Ag(x,t) in I. Therefore,
the conditional mean and variance are obtained simply
from
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where Pg(x,t) = As(x,t)Pr(x,t). As discussed in II,
this approach requires a moment closure of at least
second-order. Therefore, we only consider the second-
order exponential PDF closure introduced in II,Section
3.2.

2.1(a) Left-Linear Ansatz (KSP-2LL)

One can consider such a second-order closure with the
left-linear ansatz given by II(5),(10). This yields the set
of forward-backward equations, (12),(13) and the jump
conditions given by (15), (17) in the Appendix. As dis-
cussed there, it is more convenient to use a formulation
in (v, A)-variables, because it avoids performing a min-
imization at each timestep. Since the Euler-Lagrange
equations are now partially uncoupled, the forward equa-
tion can be integrated first from steady-state initial con-
ditions for the closure and this can be followed by an
integration of the backward equation using stored values
from the forward integration.

However, this method does not yield a useful estima-
tor for the model problem. We have implemented the
method very simply, using the explicit Euler scheme dis-
cussed in the Appendix. For all of the datasets A-E con-

sidered in II, this method gave a very poor approximation
to the exact conditional statistics. In Figure 1(a) show
the resulting mean history just for dataset E. Compar-
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FIG. 1: KSP-1LL closure, dataset E (60 % rms error). (a)
mean history, (b) variance.

ing with the results in I,Figure 2 we see that this method
does yield a poor result for z.(t). Even worse, the con-
ditional standard deviation o2(t) does not exist for the
left-linear ansatz, because the approximate variance is
negative over most of the time-interval. In Figure 1(b) we
show the variance for the dataset E. The negative values
observed there imply a failure of statistical realizability of
the left-linear approximation. In fact, the PDF computed
with that ansatz becomes negative over a broad range.
It is not surprising, because the left trial function II(5)
can easily develop negative values when the coefficients
o become order one. Only for conditional averages very
close to unconditioned ones—e.g. for extremely inaccu-
rate measurements —will the a coefficients be small and
will statistical realizability hold. For all of the datasets
considered, observation error R was already too small to
allow for realizable results. Therefore, no comparisons
were made of this method with other schemes in II.



Despite this serious failure of the left-linear ansatz ap-
proximation to the KSP smoother, the approximate filter
KS-2E, given by the forward equation (14) and the jump
condition (12) for the second-order exponential PDF clo-
sure, is a good approximation to the optimal KS filter.
This method implements exactly the conditional analy-
sis step, and only the evolution between measurements is
approximated by closure. Furthermore, the exponential
PDF ansatz is guaranteed to be nonnegative and to give
a realizable result. Comparisons were thus made in II for
this second-order closure of the KS filter.

2.1(b) Double-Ezxponential Ansatz (KSP-2DE)

We also consider the second-order KSP closure with the
double exponential ansatz, 11(18),(19). Because the left
and right trial functions are now both nonnegative, we
expect to avoid the problems due to the left-linear ansatz
in the previous subsection. However, the Euler-Lagrange
equations for this ansatz are now (23),(24) in the Ap-
pendix, along with the jump conditions (26) for the solu-
tion of backward equation. These are a fully coupled set
of ODE’s satisfying an initial-value for the forward equa-
tion and a final value for the backward equation. They
must be solved together as a two-time boundary-value
problem.

We have attempted to solve this coupled nonlinear sys-
tem by a Newton relaxation method. However, the do-
main of convergence appears to be very small and for no
initial guess of the solution that we tried did the New-
ton iteration converge. Therefore, we have resorted to
a cruder method, minimizing a cost function constructed
by integrating the squares of the equations over time. Af-
ter tens of millions of steps of a conjugate-gradient algo-
rithm, we could reduce the rms residual of the equations
only to about 10%. In Figure 2 we show the results for
dataset A. Considering the poor quality of our numeri-
cal solution the results are surprisingly close to those of
the exact KSP equations shown in I, Figure 1.  Be-
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FIG. 2: KSP-2DE closure, dataset A (20 % rms error) repre-
sented by filled circles. Solid line: mean, dashed line: mean
=+ standard deviation.

cause of the difficulty in obtaining solutions, no results
for this method were shown in II. However, if good solu-
tion algorithms can be found, the method appears very
promising.

B. Mean-Field Variational Methods
1. First-Order Closure

We have also considered methods based upon the
mean-field conditioning presented in I. One of the prin-
cipal advantages of the mean-field approach is that it
permits the application of first-order closures. In re-
alistic, spatially-extended systems, this is an important
consideration, because second-order closures will involve
the square of the number of variables as for a first-order
closure. Although equations for covariances have been
solved for realistic systems, e.g. in the context of Kalman
filtering approaches, it is best to avoid solving such equa-
tions, if at all possible. The first-order closure methods
we consider do so by providing models of the required
second-order moments in terms of the first-order ones.

The mean-field approach leads also to a variational
formulation of the estimation problem. Therefore, the
problem of calculating the optimal history z.(t) becomes
one of minimizing the multi-time entropy, or of solving
the corresponding Euler-Lagrange equations with initial
and final conditions. To obtain the conditional variance
o2(t), we could calculate the Hessian matrix (T.)m: =
0?H, |02, 0% i (25, ..., x%;) and then get the variance
from the diagonal elements of the inverse Hessian ma-
trix 02(tm) = (U7 )mm. Here ¥, = z.(t,,) is the condi-
tional mean history at the m!* measurement time, m =
1,...,M. This is the approach that was used in I. How-
ever, in realistic applications this involves the inversion
of the Hessian matrix, which may be very large. We use
here an alternative “constrained minimization method”
based upon the Contraction Principle, which avoids this
inversion. It is discussed in detail in Eyink [13]. Briefly,
this method uses the fact that o2(t,,) = 1/H! (z%,;tm),
now just a scalar inverse. Here

H(xmitym) = min Hi(z1, ..

Tn ,NFEM

5 TM) (2)
is the single-time relative entropy, and
Hi(.%‘m;tm) = Am(ml,...,mM)|wn:in(wm)’n¢m, (3)

where {Z,(z,),n # m} achieves the minimum in (2).
To obtain the second-derivative, we can use a finite-
difference approximation such as H)(z},; tmm) =~ HL(zk, +
0;tm) /0 for some small 6. An algorithm based upon these
ideas performs the minimization in (2) with z,,, = 2}, +46
held fixed, successively for each measurement time ,,.
Each such constrained minimization yields o2 (t,,) at the
corresponding time. To obtain o2(t) at selected times
t intermediate to the measurements, we insert a set of
“pseudo-measurements” at those times with infinite vari-
ance.

There are two versions of these first-order closure
methods that we consider:
2.2.1(a) Left-Linear Ansatz (MFV-1LL)



When using the left-linear ansatz, there is no closed-form
expression for the multi-time entropy or the effective ac-

where y.,,, m = 1,..., M are the measured values and
R,,, m = 1,..., M are the error variances of those mea-
surements. For the first-order closure, M(z) = (z).
Therefore, one obtains Fx(\1,...,A\nm) as discussed in
IT,Section 2.1.1, by one forward integration of (12) with
the jump conditions (14). To perform the inner maxi-
mization in (4) by a conjugate-gradient algorithm, one
requires the derivatives z,, = 0Fx/0\,, as well. These
are obtained as discussed in I,Section 2.1.1 and the Ap-
pendix, from one backward integration of (13) with the
jump conditions (15). To obtain the outer minimization
in (4) one may apply a conjugate-gradient algorithm yet
again, as was done in I. Although the minimization is over

M
H.(z],..,a}) = | min {Z_lscm(Al, -
Here
OF
T (AL, ooy Ang) = m—X()\l,...,)\M), m=1,..,M. (6)

To carry out the minimization in (5) by a conjugate-

M

vy Xh) = min  max E T Am
T1yees®M Alyees AM 1
m=

M
7)‘M))‘m _FX()‘lvv)‘M) + Z

tion. As in I, the problem of calculating the optimal
history reduces to solving the minimax problem

only the variables x1, ...,z at the measurement times,
the optimal history z.(t) is obtained at all times from
the formula (16) in the Appendix. This fact gives a sig-
nificant reduction in the computational labor involved in
carrying out the minimization. It is another consequence
of the Contraction Principle of large deviations theory.

However, performing two conjugate-gradient optimiza-
tions in such a nested fashion as described above gives the
optimal history to only a quarter of working precision and
requires the square of the computing time as for one min-
imization. Therefore, it is advantageous to reformulate
the minimax problem above as a single minimization:

(wm()‘la"'a)‘M) _ym)2} . (5)

2R,

m=1

gradient algorithm requires knowing the gradient of
the function inside the bracket. Calling this function
H.(\1,...,A\n), one can see that form=1,.... M

oz,

With this gradient we can perform a single conjugate-
gradient minimization, but the price to be paid is that we
must obtain the Hessian 8z, /0, = 0% Fx /0XA0\m. To
calculate this, we used the algorithm discussed in the Ap-
pendix. In this scheme, one calculates the above deriva-
tives, for each fixed m = 1,..., M by integrating a for-
ward equation for times > t,, and a backward equation
for times from t; to ¢;. Only the gradient in (7) needs
to be stored and it can be built up by adding in succes-

=00 ) 28 o ). g

sively the M terms of the sum. Therefore, this method
gives in M forward-backward integrations the M compo-
nents of the gradient in (7), with storage requirements of
the same order as those in the double-minimization algo-
rithm. Hence, we have employed this efficient minimax
algorithm for our computations shown in IT (with thanks
to M. Anitescu for suggesting the approach).

Given the experience with the left-linear ansatz for
the KSP closure in section 2.1(a), one may worry that



there will be similar realizability failures in the present
case as the negative variances which occurred there. It
turns out that there is a realizability failure using the
left-linear ansatz in the mean-field variational approach
for the double-well problem, but it is more subtle and less
pernicious than the negative variances found in the KSP
closure. A simple realizability condition on the multi-
time functions Fx (A1, ..., Aapr) and Hx (21, ..., zpr) is that
they should be convex functions of their arguments. We
have found by numerical computations with the algo-
rithms outlined above that these functions are not con-
vex when calculated using our first-order closure with the
left-linear ansatz. For example, the function Fx (Ar, A2)
for M = 2 has a small “ridge” along which it is concave,
not convex. This can be clearly seen in the section of
its graph in Figure 3(a).  The dual surface, which is
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FIG. 3: MFV-1LL closure. (a) two-time free-energy function,
cross-section at A2 = 50. Note concavity for 0 < A\ < 2 (b)
two-time entropy function, contour plot. Swallowtails are in
the lower left and upper right.

the graph of the Legendre transform Hx (x1,x2), should
then contain a swallowtail caustic by well-known results
in singularity theory. The swallowtails are easily seen as
the dark “wedges” in the contour plot of Hx (z1,z2) in
Figure 3(b). Hence, the approximate two-time entropy
is multi-valued.

However, this is a less severe breakdown of realizabil-
ity than what occurred in the KSP closure. It is quite
analogous to the breakdown that appears in the equi-

librium statistical mechanics of the van der Waals gas,
where the Helmholtz free energy A(T, V') exhibits a sim-
ilar non-convexity in volume V and then its Legendre
transform, the Gibbs free energy G(T', P) develops a swal-
lowtail singularity (see [14], Section 2.3 for the van der
Waals gas and Pippard [15] for an interesting discussion
from the point of view of singularity theory.) A prag-
matic solution to this realizability failure would be re-
place Fx (A1, ...,A\p) by its convex hull, the exact ana-
logue of the Maxwell construction used in the van der
Waals gas. However, we have not attempted to imple-
ment such a fix because, in practice, we have encoun-
tered no difficulty in employing the multi-valued entropy
Hx (x1,...,xp) for any of our five datasets A-E. This is
perhaps due to the fact that the swallowtails are not very
large and their vertices are located at a point somewhat
beyond the points (+1,+1) in the z1z2-plane for M = 2.
In fact, the minimizing histories shall rarely enter this re-
gion of multi-valuedness unless there are extremely accu-
rate measurements which force the history there. In any
case, our algorithm as formulated originally, without any
Maxwell-type construction, successfully converged for all
of the datasets A-E and results for those were presented
in II. It is interesting that the left-linear ansatz led to a
less dire breakdown of realizability for the first-order clo-
sure of the mean-field variational equations than it did
for the second-order closure of the KSP equations.
2.2.1(b) Double-Ezponential Ansatz (MFV-1DE)
Another first-order closure method for the mean-field
variational approach uses the double-exponential ansatz.
In that case, there is a closed form for the effective ac-
tion T'x[z], given by (21) in the Appendix with z(t) =
m(t) = wu(A(t)). Again it is more convenient to use
the (v, A)-formulation, because it avoids minimizations
at each timestep to find A\ given p. It is much easier to
obtain u(A) once A is known. As in I(30), the M-time
entropy is obtained from the effective action by mini-
mization over the history at intermediate times:

Hx(z1,....,2m) = Tx[z], (8)

{z:z(tm)=2m,m=1,...,M}

Notice that the action in (21) is always single-valued,
non-negative and locally convex near its global minimum,
the solution of the first-order moment-closure equation.
The relative entropy function obtained from the Contrac-
tion Principle in (8) will share these properties. As ex-
pected, the multi-valuedness which mars the multi-time
entropy calculated from the left-linear ansatz is cured by
using the double-exponential ansatz. There is no sign of
the swallowtail singularities, which appeared in Figure
3(b) for the left-linear ansatz, in a contour plot of the
two-time entropy Hx (x1,z2) calculated from (8) for the
double-well model using the first-order closure with the
double-exponential ansatz.

The algorithms to calculate the conditional mean . (t)
and variance o2(t) are the same as before, and reduce
to minimizations of the effective action I'x[z] (with or
without constraints). For this purpose we found it



most efficient to use a hybrid algorithm which combined
conjugate-gradient minimization with direct solution of
the Euler-Lagrange equations (12),(13) for the jump con-
ditions (14), (15). The solution method of the latter
equations was the same as that used for the KSP clo-
sure equations in section 2.1.1(b), namely, a Newton
relaxation algorithm of the discretized equations. We
found the same small domain of convergence of the New-
ton method here as we found earlier for the KSP clo-
sure equations. The difference is that here the equations
plus jump conditions are variational, so that the New-
ton relaxation may be initialized with the output of a
conjugate-gradient minimization of the action (21). The
latter is rather slowly converging, but robust, since con-
vergence is guaranteed. The output of the conjugate-
gradient minimization yields a good guess for the solu-
tion A(t) and the latter may be input into (13) which
is then solved backward to yield a corresponding guess
for (t). By switching over to Newton relaxation at suc-
cessive stages of convergence of the conjugate-gradient
algorithm, we developed an algorithm with the robust-
ness of conjugate-gradient but the speed and accuracy
of Newton. This hybrid algorithm was used to generate
all results with the first-order closure, double-exponential
ansatz in II.

2.  Second-Order Closure

Although first-order closures are the simplest and most
widely applicable, second-order closures are conceivably
practical. As mentioned earlier, solution of equations for
covariances are also required for Kalman filtering and
smoothing schemes. Therefore, the second-order clo-
sure described in IT,Section 3.2 is also applied within the
mean-field variational approach. It is interesting to see
whether addition of further moments to the closure im-
proves or degrades performance.

Most details for the mean-field analysis with the
second-order closure are the same as for the first-order
closures, discussed in section 2.2.1. Therefore, we shall
only mention here the essential differences. First, since
now the vector of moments is (M; (), Ma(z)) = (z, 22),
we obtain the action for the state-history x(¢) from

I'x [X] = nr}gl FM[mlv m2]7 (9)

where (mi,ms2) = (x,X). This leads to rather ob-
vious modifications in the algorithms discussed earlier.
For example, the formulas (2)-(8) in the preceding sec-
tion 2.2.1 now hold for Fas(A1, ..., Anr), Hyr(my, ..., mpr)
rather than for Fx(A1,...,Anm), Hx (X1, ...,xpr) directly.
Results for the latter must be obtained by applying the
Contraction Principle, in the form of (9). Another obvi-
ous change is that the forward-backward equations from
the Appendix that must be solved are now 2-component
vector equations. It is no longer a mere convenience,
but in fact a necessity, to use the (v, A)-formulation of

the Appendix in any conjugate-gradient minimizations.
In fact, the alternative (c, p)-formulation introduces a
moment realizability constraint, us — u? > 0, which is
not respected by a conjugate-gradient algorithm. In-
stead the (o, p)-formulation can only be used in conjunc-
tion with optimization methods involving inequality con-
straints [22]. When calculating the conditional variance
o2(t) using the (v, A)-formulation, the constrained mini-
mization in (2) must be carried out with a Lagrange mul-
tiplier. In our calculations for IT we used that method,
discussed in detail in Eyink [13].

2.2.2(a) Left-Linear Ansatz (MFV-2LL)

By means of such algorithms as outlined above, we imple-
mented the second-order closure of the variational mean-
field equations, with the left-linear ansatz. Except for
the changes discussed above, we used the same efficient
minimax algorithm discussed in section 2.2.1(a) for the
first-order closure. In fact, we encountered the same
realizability breakdown for the second-order closure as
we did previously for the first-order one, i.e. multi-
valuedness of the multi-time entropy in the form of swal-
lowtail singularities. However, for the second-order clo-
sure these were even broader, and invade the region where
1 ~ £0.5,22 &~ +£1.5. See Figure 4. In practice, this

0.5

FIG. 4: MFV-2LL closure, two-time entropy function, con-
tour plot. Swallowtails are seen at the lower left and upper
right.

prevented the convergence of the conjugate-gradient min-
imization algorithms for any of the datasets A-E. Rather
than converge, such methods jumped from sheet to sheet
of the multi-valued function. Therefore, no results from
this method were presented in II. It is interesting that
the realizability failure was more severe for the second-
order closure than the first-order one. It is still not as se-
vere as the breakdown for the second-order closure of the
KSP equations, and might be effectively dealt with by a
“Maxwell construction”, as discussed in section 2.2.1(a).
However, we did not attempt such a remedy in this work.
2.2.2(b) Double-Ezponential Ansatz (MFV-2DE)



We also implemented the second-order closure of the
variational mean-field equations, with the double-
exponential ansatz. With changes as indicated above,
we employed the same hybrid algorithm as discussed in
section 2.2.1(b) for the first-order closure. This is also for
the second-order closure a fast and robust algorithm. As
expected, the double-exponential ansatz avoids the real-
izability problems with the left-linear ansatz, discussed
above. The cost function is single-valued, nonnegative,
and convex. There are neither swallowtail caustics nor
any other evident realizability failures encountered in our
calculations.

C. Empirical Ensemble Methods

For comparison with our moment-closure methods, we
have also implemented two ensemble approximations to
the statistical evolution, as discussed in II,section 2.2.

2.3(a) Ensemble Kalman Filter (EnKF)

The first method we considered is the Ensemble Kalman
Filter (EnKF). This method was originally proposed and
tested by Evensen 1994 for a nonlinear quasigeostrophic
model. We also incorporated the important correction
to the analysis step in the original EnKF method, which
was noted in Burgers et al. [10] and Houtekamer and
Mitchell [16]. For details of the method itself, we refer
the reader to those orginal references. We integrated our
model stochastic ODE II,(33) by the Euler-Maruyama
method with A¢ = 0.01 [see 17]. We employed N =
10,000 samples in calculating empirical moment-averages
according to I1(32).

2.3(b) Ensemble Kalman Smoother (EnKS)

The second method we considered is the Ensemble
Kalman Smoother (EnKS) proposed in Evensen and van
Leeuwen (2000). Note that this is a sequential smoothing
method, distinct from the ensemble smoothing algorithm
earlier introduced by those same authors in van Leeuwen
and Evensen [9]. The latter is now referred to simply as
the Ensemble Smoother (EnS) method. In fact, we em-
ployed both methods, EnKS and EnS, for our datasets
A-E. However, in all cases the original EnS method per-
formed considerably worse than did the EnKS method,
so that only results of the latter are reported in II. Our
numerical implementation of the EnKS method was the
same as that described above for EnKF (which, in fact,
forms a subalgorithm of EnKS).

III. COMPUTATIONAL EFFICIENCY

In this section we shall present our comparisons of the
moment-closure estimation schemes with the empirical
ensemble methods, in terms of computational speed and
efficiency.

TABLE I: Wall-clock time for the KS and EnKF methods.

Method Parameters Time (seconds)
KS-2E At =0.01 0.49
EnKF At =0.01, N = 1600 15.58

A. Comparison of Filtering Schemes

First, we consider the approximate filters. The meth-
ods we shall compare are the KS-2E closure of section
2.1(a) and the EnKF method of section 2.3(a). It is not
as interesting to consider the optimal KS method of I,
which uses the forward Kolmogorov equation, because it
cannot be applied to realistic geophysical systems with
many degrees of freedom. Therefore, we shall systemati-
cally compare just the suboptimal methods which may be
applied practically to such systems. All of these meth-
ods calculate an approximation to the entire filter dis-
tribution, Pg(x,t), from which the first two moments
presented in II, zr(t) and 0% (t), were obtained by in-
tegration. Since in II the results on filters were given
only for dataset A, we shall consider here as well only
that dataset. For a fair comparison, we ran the codes for
both approximate methods on the same 200 MHz ma-
chine, a Linux-based Intel Pentium Pro II. In each case,
we made a choice of parameters in the method so that
a tolerance of 5% was achieved, compared with a fully
converged calculation. For KS-2E the only parameter is
the time-step At used in the integration of the closure
equations. For EnKS there is, in addition to the time-
step At, also the number of samples N. The total time to
calculate both zp(t) and oZ(t) to 5% accuracy appears
in Table I, along with the parameter values required, for
both of these methods: We shall also just mention that
the computation with the optimal KS method of I, using
Az = 0.09375 and At = 0.01, required 7.64 seconds.

In terms of computational speed, the KS-2E closure is
the fastest of all three methods considered. The KS-2E
closure solving ODE’s is about fifteen times faster than
the exact KS filter solving PDE’s for this simple test case.
Of course, as the dynamical equations become more and
more complicated, the closure algorithm would be ex-
pected to gain even a greater advantage in speed (but
with possible loss in accuracy). EnKF was slowest of all
the methods, which is not surprising for a Monte Carlo
algorithm. We expect that the KS closure methods, as
exemplified by KS-2E, will continue to be faster than
the the EnKF method, or at least be no slower, also for
more realistic problems. The reason is that, in EnKF,
one must solve the full dynamics, analogous to I1(33),
for N separate samples, where N is at least 100. How-
ever, in KS closure methods one must solve equations for
means and covariances, such as I1(8),(44), but only once.
Furthermore, the solutions of the closure equation repre-
sent ensemble-averaged quantities. Hence, they shall be
smoother in space and time than individual realizations,



and thus require a less fine resolution in spacetime to
compute numerically.

It was already shown in II that, for our simple test
problem, I1(33), the KS-2E closure gives also a more ac-
curate approximation to the optimal KS results than does
EnKF. Whether this shall remain true for more com-
plicated dynamical systems, depends, of course, on the
quality of the statistical ansétze which are input into the
moment-closure scheme. For the simple test problem, the
KS-2E closure reduces as well the storage requirements
of EnKF. The latter needs to save the current values of
the N sample solutions z(™ (), n = 1,..., N of the equa-
tion I1(33). In the KS-2E closure, one must store only the
current values of the two moments py (t), u2(t). However,
in more realistic, spatially-extended systems, this means
that equations for space fields and also a space-space co-
variance function must be stored in a typical KS closure
scheme. Let S¢ be the number of space points used in the
computation of the closure equations, Sy; the (greater)
number required for the solution of the primitive model,
and N the number of samples required in the calculation
of ensemble-averages. As long as SZ < Sy - N, then the
storage requirements for a KS-closure will be less than
that for the EnKF method, on a rough order of magni-
tude.

It should be noted that these considerations apply only
for the most standard forms of closure, in which all the
first-order moments, and possibly also the second-order
moments, of the state variables of the system are used
in constructing the closure equation. However, there
is nothing that restricts to one to such conventional
closures. One can expect more substantial computing
economies to arise from more ingenious and insightful clo-
sures, which incorporate more knowledge of the statistics
and dynamics of the system.

B. Comparison of Smoothing Schemes

Now we shall compare the approximate smoothers.
As for the filters, we do not make any systematic com-
parisons for the methods KSP and MFV that use the
forward-backward Kolmogorov equations. Instead, we
shall compare just the suboptimal methods which may be
applied practically to large-scale systems, namely, MFV-
1LL, MFV-1DE, MFV-2DE, and EnKS. Since calcula-
tions for all of the datasets gave rather similar results in
regard to computing time, we shall only report the re-
sults here for dataset C. In each case, we used the most
efficient algorithm that we have in hand, as discussed
in Section 2, although we have not attempted to opti-
mize the codes themselves for performance. For a fair
comparison, we ran all four codes on the same 200 Mhz
Pentium Pro IT as used for the filters. In each case, we
made a choice of parameters to obtain 5% accuracy in
the results. For the EnKS method, there are two param-
eters, time-step At and number of samples N. For the
MFYV methods, the parameters involved are time-step At,

TABLE II: Wall-clock time for the various methods.

Method Parameters Time (seconds)
MFV-1LL At =0.01, TOL =103 376.07
MFV-1DE At =0.1, TOL =102 0.77
MFV-2DE At =0.1, TOL=10"% 5.79

EnKS  At=0.01, N = 3600 42.16

the tolerance TOL requested in the conjugate-gradient
minimization, and the discretization § used in the finite-
difference approximation of the Hessian. Since we used a
first-order finite-differencing, the optimal value of the lat-
ter is § ~ VT OL and we have always made that choice.
The minimizations in the MFV methods were carried out
with a standard conjugate-gradient-type algorithm, the
TOMS 500 algorithm CONMIN [see 18]. The total time
to calculate both z,(t) and o2(t) to 5% accuracy for each
of these methods is shown in Table II. We shall also men-
tion that exact KSP with Az = 0.09375, At = 0.01 took
17.97 seconds to compute the conditional distribution for
our simple double-well model.

At first sight, it is perhaps surprising that MFV-1LL
performs so badly in comparison to the other methods
(even exact KSP). There are two reasons for this. First,
a smaller time step At = 0.01 was required than for
the other MFV methods. Use of a larger value of At
gave rise to divergent results, due a realizability break-
down similar to what was found in section 2.2.2(a) with
MFV-2LL at finer resolution. Second, there is no closed-
form expression for the cost function in the MFV-1LL
method. Using the most efficient minimax algorithm dis-
cussed in section 2.2.1(a), still the entire code relies on
the conjugate-gradient algorithm for convergence. While
conjugate-gradient is robust and reliable, it is also very
slow. The hybrid algorithm discussed in section 2.2.1(b)
that was employed for MFV-1DE and MFV-2DE allows
a switch over to a fast Newton algorithm to solve the
Euler-Lagrange equations once conjugate-gradient has
produced a sufficiently good initial approximation. For
these reasons, the MFV-1LL method turns out not only
to be much less accurate, but also far slower than MFV-
1DE and MFV-2DE. The latter two methods, when im-
plemented by the efficient hybrid algorithm are also both
much faster than EnKS. One of the reasons for this is the
ten times larger timestep At allowed by the MFV closure
methods (including MFV-1LL when there was no realiz-
ability breakdown, as, for example, for dataset E). This
is an example of the reduced resolution requirements ex-
pected in working with equations for smooth statistical
moments rather than for individual realizations, which
are rougher. Another reason is just the well-known slow
rate of convergence of Monte Carlo schemes, in which sta-
tistical errors decay only ~ 1/ V/N. We expect that the
MFV-2DE closure method will at least equal the EnKS
method in speed also for more realistic problems, for sim-
ilar reasons as in the case of filtering. The MFV-1DE



method will likely be much faster even than MFV-2DE—
and therefore also EnKS—Dbecause it requires the solution
of only first-order moment equations and not equations
for second-order moments or covariances.

For the test problem I1(33) all the MFV-closure meth-
ods give a more accurate approximation to the optimal
KSP results than does EnKS. See II. As in the filter-
ing problem, this shall remain true for more complicated
systems only if sufficiently good guesses of the statistics
are input into the moment-closure schemes. The storage
requirements of the various methods may also be briefly
compared. In MFV-1LL one must store, in addition to
the current conjugate-gradient iterate (Aq, ..., Apr), also
the corresponding solution histories A(¢) of (12) and
OX(t)/OAm of (19) for m = 1,..., M at times ¢ € [t;,ty].
Note, however, that the latter derivatives need not all be
stored simultaneously, but only the contribution to the
gradient of the cost function needs to be stored. The stor-
age requirements of the latter and the conjugate-gradient
iterate are of order S¢- M, with notations as above. How-
ever, the storage of the solution histories requires order
S% - T numbers, where T is the number of time points
used in the computation of the closure equations. For the
MFV-1DE method, the storage of the current conjugate-
gradient iterate requires a storage of order S¢ - T and a
similar storage for the current Newton iterate in the solu-
tion of the Euler-Lagrange equations. For the MFV-2DE
method this storage requirement increases in both cases
to SZ - Tc. For the EnKS method, N solution histories
x(")(t), t € [tirt7], n = 1,..,N of the model equation
must be stored, a set of numbers of order Sy - N - Ty,
where T is the number of time points required in the
computation of the primitive model equations. As long
as S -Tc < Sy - N - Ty, then the storage requirements
for MFV-1LL and MFV-2DE will be less than that for
the EnKS method. The storage for MEV-1DE will then
usually be far less than that required for EnKS. Some
reductions can also be achieved for EnKS by storing past
histories only for a finite memory-interval or correlation-
time prior to the current state. Details on this strategy
appear in Evensen and van Leeuwen [11].

IV. DISCUSSION AND SUMMARY

In this paper we have described efficient numerical al-
gorithms to implement various estimation or data assimi-
lation schemes based on moment-closure approximations
to the dynamics and either the exact or a mean-field con-
ditional analysis. It was found that the methods using
a linear ansatz for the left trial function, or solution of
the backward Kolmogorov equation, are subject to fail-
ure of realizability. This is particularly true when using
the exact conditioning. However, the methods employ-
ing the mean-field variational analysis are generally re-
alizable. In terms of computational speed and efficiency,
the mean-field variational closures were found to perform
better than empirical ensemble methods in a simple test
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problem. It is expected that the closure methods will
be at least competitive with ensemble methods in more
realistic applications in the geosciences, involving one or
several partial differential equations.

Here let us add just a few summary remarks about the
individual strengths of these two methods:

The ensemble method has an advantage that it is sys-
tematically convergent in the limit as N — oo. By con-
trast, moment closure approximations are generally not
so, and it is usually not clear how to improve them in a
straightforward way. (An exception to this statement is
closure achieved by expansion of the trial functions in or-
thogonal polynomials; e.g. see [19].) On the other hand,
ensemble methods are very slowly converging, suffering
the ﬁ errors typical of Monte Carlo methods. This
means, for example, that a 10% accuracy in calculating
moments will generally require no less than N=100 in-
dependent samples. Therefore, the empirical-average ap-
proximation will, in practical applications, often be far
from converged to the correct evolution, even though con-
vergence is achievable in principle. Methods to accelerate
convergence of Monte Carlo integration, such as strati-
fied sampling [20] and Richardson extrapolation [21], can
improve this situation.

In terms of convergence of space-time discretizations,
the closure method will generally have some advantage.
Because it integrates moment-closure equations which
correspond to statistical averages, its solutions will gen-
erally be smoother and require less numerical resolution.
On the other hand, the empirical ensemble method in-
tegrates equations for individual realizations which may
contain sharp gradients or rapid oscillations that need to
be resolved. This advantage of moment-closure schemes
will increase with the size of the system and the num-
ber of active scales of motion. On the other hand, the
moment-closure method has its own convergence prob-
lems. If fast iterative solution of Euler-Lagrange equa-
tions fails, it may require direct minimization of the con-
vex cost function. Descent algorithms for this purpose
are suitably robust but also quite slow. Another impor-
tant issue for computational efficiency is the storage re-
quirements of each method. Implementations of ensem-
ble smoother schemes require storage of IV entire sample
histories, at least for times less than some characteristic
correlation time of the system. In contrast, the closure
schemes require storage only of the current approxima-
tion to the conditional mean history, and, possibly, the
conditional covariance.

A. APPENDIX: THE FORWARD-BACKWARD
EQUATIONS

A. Dual Thermodynamic Fields

To integrate the forward equations II(8) or II(25),
one must carry out the maximization in II(41) at each
timestep in order to determine the value of A corre-



sponding to the current value of . This is necessary
in order to calculate averages with respect to the expo-
nential PDF TI(10). However, this maximization at each
timestep adds an additional computational cost to the
integration. As we show here, it is possible to eliminate
this maximization by formulating the closure dynamics
directly in terms of the dual “thermodynamic fields” A.
The equation for the dual fields is

A=W b). (10)

The vector W(A,t) = T'(A,t) V(e (A, t),t), where V(u, t)
is the dynamical vector for the moments themselves, de-
fined in II(7). The second-order irreducible correlation
function T'(A,t) = [C(A,t)] 7!, where C is the covariance
matrix of the moment-variables. Since this equation is
obtained from II(8) by a mere change of variables, it re-
tains all of the good properties, such as an H-theorem.
The H-function or relative entropy may also be expressed
directly in terms of the dual A-variables, via the formula
Hyr(\t) = n T (AN = Fayr (A t).

The action functional II(6) that arises from left-linear
ansatz may also be expressed in terms of the dual ther-
modynamic fields A along with a corresponding set of
adjoint variables v = Ca. One has, corresponding to
I1(6), the reduced action

t

Ly, Al = "t YT ORE) - WAR), - (1)

t;
The Euler-Lagrange equations are the closure equation
A=W t) (12)

and its adjoint equation

11

and backward in time:

B tm) + vk = (A tm) + Vi (15)

for m = 1,..., M. The former are obviously equivalent
to I(12), while the latter follow from the requirement of
continuity of

m(t) = p(A(t), 1) + (1) (16)

at the measurement times. Cf. II(14),(15). The KSP
jump conditions in a second-order closure with A =
(£, A), in the notations of II, are forward in time:

1
G =L+ Rym, AL =AL — SR, m=1,.,M
(17)
and backward in time the same as (15) above.
For the purpose of the minimax algorithm discussed
in Section 2.2.1(a), one requires also the components of

the derivatives Om,s /0., n,n’ = 1,..., M. These are
obtained by, first, differentiating (16) to get

om(t) OAE)  Ov()
o, SOOI+

(18)

and setting ¢ = ¢,,». Note that, by causality, the first term
on the righthand side does not appear for t < t,. We
may obtain the partial derivatives in (18) by integrating
forward in time

AN
() e " 4020 _ W x (e, 220 (19)
. . . . dt 0N, ~ OA W
The mean-field jump conditions in these variables are
quite simple, forward in time:
for t > t,, starting with initial condition
A=A + A (14) O (tn+)/0An = On,n, and equation
|
doyit) . 0°W OA(t)  [OW\ ' oy(t)
F 0005 + (T1) a5 <o (20)

backward in time for t; > ¢t > t,, with final condition
Ovni (tg)/ONn, = 0. Again, the solutions of the forward
equation (19) must be stored for use in the backward

equation (20).
In the double-exponential ansatz, the effective action
can be written as



1 [if

using m(t) = pu(A(t),t) in (20) of II. Here
S()‘at) = I‘(uvt)Q(u‘at)r(uvt”u:”()\’t) . (22)

Using the same adjoint variable as above, the Euler-
Lagrange equations for this functional are

A=W t)+2S(A,t)y, (23)
(oW d , +
7+(a—>\> T+ax (7'SY) =0 (24)

[é,;] _ [é% . [cmu(tm),tm)

m=1,...,M.

B. Cumulants and Generating Functions

The terms in the closure equation (10) involve vari-
ous moments p, = (z") of the dynamical variable x of
the model problem II(33), for n = 1,2,3.... Likewise,
the terms in the adjoint equation (13) require derivatives
Opin /OAn where n' = 1 for the first-order closure and
n' = 1,2 for the second-order closure. The equation (20)
requires also second-derivatives 8%, /0N, O, as does
the solution of (23),(24) by a Newton method. We sketch
here a method to obtain all of these moments and their
derivatives to working precision, by means of cumulants.
Although we might do so more generally, our remarks
here shall be most specifically for the model equation
T1(33).

The single-time “free energy” Fps(A,t) defined in
IT,Section 2.1.1 is a cumulant-generating function for the
moment-variables M(x, t) appearing in the closure. For
the two exponential PDF closures discussed in II,Section
3, M, (z) = 2™ with n = 1, 2. Thus, nth-order cumulants
C,, of the variable M = x can be obtained by derivatives

_O"Fu
Cn = AT

(27)

dt [A(t) = WX, )]SI O[AE) = W, )] + Har (B(A(:), t:)

Cxz(A(tm),tm) CXX()\(tm),tm)] [I—{?;g;? ]’
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with boundary values ~(t;) = C(A(t;),t:)A(t;) and
~(tf) = 0. At measurement times there are jumps only
in the backward equation. In the mean-field case the
backward jump conditions are

25
In the case of KSP, we denote as v = (g, G) the ad-
joint variable corresponding to A = (£,A). The back-
ward jump conditions are then

Cox(A(tm), tm) (26)

with respect to the variable A;. It follows directly from
this that

oCn

6A1 = Un+t1- (28)
Furthermore,
6"+mFM
o = 2
Crni OATONT (29)

is the joint cumulant of nth order in M; = = and of mth
order in My = z2. Therefore,

9Cn Chii-

N, O (30)

All of the cumulants Cy, and Cp;,, may be readily calcu-
lated analytically by differentiating the closed-form ex-
pressions of Fis given for the first- and second-order clo-
sures in IT,Section 3.

The moments p, required in the closure can be ex-
pressed by an expansion in cumulants.

n!

Mn =

>

rini+-+rsns=n

(nl!)rl cee (ns!)"'s /r-l! B

![Cnl]” T [Cns]rs (31)



See [14], Chapter 10. The sum is over all partitions of
the integer n into the s summands n; repeated r; times,
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i=1,..,8 withn <ng < -+ <ng:

s+

The total number of such partitions for fixed n is the
famous number-theoretic function p(n). Explicitly for
the first few values of n = 1,2, 3, 4:

pm = Ch, (33)
pa = Cy + CF, (34)
pz = Cs +3C1Cs + C3, (35)

ps = Cy +4C1C3 + 3C% +6C,C2 + CF. (36)

The derivatives of moments, Ou,/OA, can be obtained
by differentiating (31), using the product rule and equa-
tions (28),(30).

C. Numerical Schemes for Variational Equations

The numerical integration of the Euler-Lagrange equa-
tions (12),(13) for the left-linear ansatz requires a suit-
able discretization. It is most practical to generate the
required discrete form of the equations from a discretiza-
tion of the action (11). For example, the discrete action

ny

F[’Ya A] = Z ’YI[ATL - An—l - AtW(An—latn—l)]a
o (37)
leads upon variation to an explicit Euler scheme for the
forward equation

An = A1 + At W(An_l,tn_l) (38)

+ ng

Ts

and a backward Euler scheme for the adjoint equation

oW

T
Yn-1 ="Yn+ At (a) ()‘ﬂflitnfl)‘)/n‘ (39)

This approach guarantees that structural properties of
the continuous-time equations are preserved by the nu-
merical discretization. For example, if jump condi-
tions like (14),(15) are imposed at discrete measurement
times n(my), m = 1,..,M and if one defines a “free-

energy” Far(A1,...,Am) = Z%ZI(AFM)()\L...,)\M) as
in II,Section 2.1.1, then it can be shown that m,, =
OFn\ O, is equal to

My, = LS s tngn) Y = B b)) F Y s
(40)
for m = 1,..., M. Here + indicates values just after the
jump and — values just prior to the jump at the measure-
ment time 7n(,,). This exact property of the continuum
equations (see Eyink [13], Appendix 2) is therefore pre-
served by the discretized equations for every choice of
At. Thus, there is no need to rely upon convergence as
At — 0 or high-order accuracy in At in order to ensure
that the property (40) will hold. Since the minimax al-
gorithm discussed in Section 2.1.1(a) depends upon this
property, it is clearly desirable to retain it exactly in the
numerical scheme. For this reason, we have been able
to perform all of our calculations with the explicit Euler
scheme in (37)-(39), which is only first-order accurate,
and still obtain well-converged results
The same remarks apply to the closed-form cost func-
tion (21) from the double-exponential ansatz. A discrete-
time form of the effective action can be written as

ny
FM[77)\] = Z {’YI[ATH—I - An - Atw(An;tn)] - At7IS(An;tn)7n}

n=n;

The Euler-Lagrange equations for this functional are

Ant1 = An + At W(An, tn) + 286 S(An, t)Y,  (42)

and
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B AN )
T =70 A () sty 8050 (SO (43)

oA

for n = ny,...,ny. The boundary values become =,,, | =
C(Ani;tn)An; and 7, = 0. This Euler discretiza-
tion scheme is particularly convenient when solving
the initial/final-value problem by a Newton relaxation
method. In that case, the linear equations which ap-
pear at each iteration of the Newton algorithm are block-
tridiagonal and can be easily solved by sparse matrix
methods.
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