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Abstract

This paper considers the problem of data assimilation into nonlinear stochastic dy-
namic equations, from the point of view that the optimal solution is provided by
the probabilities conditioned upon observations. An implementation of Bayes for-
mula is described to calculate such probabilities. In the context of a simple model
with multimodal statistics, it is shown that the conditional statistics succeed in
tracking mode transitions where some standard suboptimal estimators fail. How-
ever, in complex models the exact conditional probabilities cannot be practically
calculated. Instead, approximations to the conditional statistics must be sought. In
this paper, attention is focused on approximations to the analysis step arising from
the conditioning on observational data. A suboptimal mean-field conditional anal-
ysis is obtained from a statistical mechanics of time-histories. It is shown to have
a variational formulation, reducing the approximate calculation of the conditional
statistics to the minimization of the “effective action,” a convex cost function. This
mean-field analysis is compared with a standard linear analysis, based on a Kalman
gain matrix. In the simple model problem, the mean-field conditional analysis is
shown to approximate well the exact conditional statistics.

1 Introduction

It has been appreciated for some time that a probabilistic approach is nec-
essary for data assimilation in the numerical modeling of ocean or climate
dynamics or in numerical weather prediction. Leith long ago discussed the
limits to theoretical skill in stochastic dynamic forecasting from the point of
view of empirical ensembles of sample states of the model, distributed accord-
ing to a probability law (see Leith, 1974). From that point of view, the proper
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goal of any estimation scheme—whether for forecasting or for hindcasting—is
to determine the probability distribution of the possible states of the system.
Observational data from satellite stations or other measurements on the sys-
tem change the prior statistical distribution. Lorenc and Hammon (Lorenc
and Hammon, 1988) have discussed how such information from observations
may be incorporated into the statistical characterization of initial conditions
for weather forecasting by Bayesian probability methods. The Kalman filter-
ing method and least-squares variational method, described in Courtier et al.
(1993), provide convenient algorithms to calculate such conditional statistics
for linear dynamical systems with additive, Gaussian error statistics.

More recently, it has been realized that systems with strongly nonlinear dy-
namics and/or multiplicative or non-Gaussian noise pose an especially chal-
lenging problem for data assimilation. Methods that were derived and vali-
dated for linear systems with Gaussian error statistics have been found often
to fail there. For example, when the extended Kalman filter was applied to
prediction in a two-layer quasigeostrophic model (see Evensen, 1992; Gau-
thier et al., 1993; Bouttier, 1994), it was found that the matrix Ricatti equa-
tion for the error covariance leads to unbounded error variance growth in the
presence of an unstable background flow. Limitations on the growth corre-
sponding to error saturation due to nonlinearities had to be put in by hand.
Multi-modal, non-Gaussian statistics associated to multiple attractor regimes
of the nonlinear dynamics also cause problems for such methods. In Miller
et al. (1994) it was shown for a simple model with bimodal statistics (rep-
resenting, for example, an “ice age” and a “normal climate” state), that the
extended Kalman filter and least-squares variational method both fail to de-
tect state-transitions observed in the data, when the measurements are not
very accurate or very dense in time. Only the inclusion of high-order moment
statistics or of empirically-determined noise statistics were found to solve the
problem in those methods.

Such difficulties do not exist at all if the conditional statistics of the system
are correctly calculated. In Miller et al. (1999) it was shown that transitions
observed in the data are indeed reflected in the conditional probability distri-
butions for the simple model problems studied earlier by Miller et al. (1994), at
much lower accuracy and frequency of measurements than for the suboptimal
“linearization” methods. The required conditional distributions were calcu-
lated in Miller et al. (1999) by solving partial differential equations on the
state space of the system (also, see Campillo et al., 1993). Such methods also
solve the difficulty with unstable error growth observed in the linearization
methods, because the equations for the probability distributions relax at long
times to the stationary statistics or climate state of the model. Thus, error
statistics will naturally saturate due to nonlinear effects, as discussed long ago
by Leith (1974). Unfortunately, while such methods are conceptually correct
and efficacious, they cannot be applied to the realistic, spatially-extended sys-



tems of interest in the geosciences. For such large-scale systems the equations
for the full probability distributions will not be able to be solved numerically
by computers for the foreseeable future.

This fact has occasioned the development of methods to approximate the re-
quired conditional statistics. Monte Carlo methods—as originally advocated
by Leith (1974)—have in particular been actively developed by G. Evensen
and his collaborators, (see Evensen, 1994; van Leeuwen and Evensen, 1996;
Burgers et al., 1998; Evensen and van Leeuwen, 2000). More recent develop-
ments are reviewed in Tippett et al. (2003). Such methods solve the nonlinear
dynamics for an empirical set of N samples, with N = O(10?), to approx-
imate the statistical distribution of an infinite ensemble. Although it is not
easy to assess the size of the errors incurred, such methods provide a rather
effective means to approximate the evolution of the probabilities for nonlinear
dynamics. It was shown in Evensen (1994) that the saturation of error growth
for a quasi-geostrophic model was naturally achieved by such a method. How-
ever, problems remain. Miller et al. 1999 have found that such methods still
fail to properly track transitions in systems with multimodal statistics. The
failure can be traced to the linear interpolation scheme presently employed
in such methods for the “analysis” of forecast and observational data (see
Evensen and van Leeuwen, 2000). This interpolation scheme is a holdover of
the Kalman filtering methods justified for linear dynamics with Gaussian er-
rors and does not represent a correct implement of Bayes formula in general.
It is an open research problem to develop effective methods to approximate
conditional statistics for large-scale geophysical systems

This paper proposes a method for the practical calculation of conditional prob-
abilities for large-scale, nonlinear dynamical systems. Specifically, this paper
focuses on the “analysis step”, or the modification in the statistics brought
about by the conditioning upon available observational data. In many respects,
this is the crucial part of the problem. We propose here a new “mean-field
conditional analysis” which performs the conditioning upon observations in
an approximate manner. It has a convenient variational formulation, which
reduces the calculation of the conditional statistics to the minimization of a
certain cost function, the so-called “effective action”. It is still not practical
to apply this “mean-field analysis” directly to large-scale systems, but it be-
comes a practical method within various approximate methods for evolving
the statistics under the nonlinear dynamics, e.g. moment-closure methods.
The mathematical theory underlying this paper is developed at greater length
in Eyink (2002) and a brief description of its application has already been
given in Eyink and Restrepo (2000).

The detailed contents of this paper are as follows: In Section 2 we carefully
outline the problem of state estimation in its statistical formulation. We also
discuss there the exact calculation of probability distributions conditioned



upon the full set of observations, both past and future, by means of suitable
partial differential equations. The “KSP method” discussed there generalizes
that of Miller et al. (1999); Campillo et al. (1993), who conditioned only upon
past measurements and not future ones. We use the results of such a calcu-
lation as the main basis of comparison for our approximations and we argue
that they should be so used more generally. This KSP method thus has some
independent interest, apart from the specific approximate methods proposed
in this work. The latter are introduced in Section 3, where the relevant sta-
tistical mechanics of time-histories is discussed. The “mean-field conditional
analysis” which we propose is also compared theoretically in this section with
the more standard “linear analysis” which is employed in most existing data
assimilation schemes. In Section 4 we test our approximate analysis method on
the same simple model previously considered in Miller et al. (1994, 1999). We
calculate both the exact conditional statistics and our approximate conditional
statistics for several sets of “measurements” on a history of the model, and
the results are compared in detail. Section 5 contains our summary discussion
and conclusion.

2 Probabilistic Formulation
2.1 General Statement of the Problem

Consider a nonlinear model dynamics for state vector x(¢) given by

C;—’t‘ — £(x,1) + D'2(x, )q(t). (1)

The vector q(t) is a white-noise with zero mean and covariance (g;(t)g;(t')) =
26(t — t'). Tt represents noise from neglected degrees of freedom, or “model
error.” D is a covariance matrix giving the strength of the noise. We include
as a special case D = 0, i.e. no model error. The initial conditions x, are taken
to be random, with a known distribution Py(x). If the dynamics are given by
a partial differential equation, then there will be boundary conditions with
possible randomness as well. Observations y,, are taken of a linear function
h(x,t,) = H(t,,)x, including some measurement errors p,, with covariance

R,.:

Ym = h(x(tm), tm) + Py m=1,..., M. (2)

It will be assumed that the distribution of the measurement errors is known
as well, e.g. Gaussian. The problem is to determine the best estimate of the



state history x(¢) given the measurements, and, as well, to obtain a measure
of the uncertainty in this estimate. We have made here several simplifying
assumptions which are by no means necessary, such as a linear measurement
function h(¢,,) and Gaussian-distributed observation errors. However, these
allow us to illustrate our methods in the simplest context.

The optimal solution of this problem is provided by the conditional statistics,
given the measurements. Thus, the conditional mean

Xs(t) = E[X(t)b’la ayM] (3)

is the best estimate of the state, and the conditional covariance matrix (where
T denotes transpose)

Cs(t) = E[(x(t) — xs(1)) (x(t) — xs(1)) " |y1, -, ] (4)

provides a measure of its uncertainty. Of all estimators, the conditional mean

xg(t) is distinguished as the one which minimizes trCg(t) = E[|(x(t)—xs(t))[*|y1, ---» Y m],
i.e. the trace of the conditional covariance matrix. It is the variance-minimizing
estimator, or smoother estimate. A corresponding set of statistics using only

the currently available set of measurements from prior times,

xp(t) = Ex(t)|y1, -, il (5)

and

Cr(t) = E[(x(t) — xp(t))(x(t) = xp (1) " |y1, -, ¥2] (6)

with k£ chosen so that 11 >t > 1, is called the filter estimate.

2.2  FExact Bayesian Solution: Fvolution & Analysis

The optimal filtering problem in the above general setting has been solved
exactly by Stratonovich (1960), and Kushner (1962, 1967b) within a Bayesian
formulation. We define the conditional probability density

PF<X? t) = P(Xa tb’b ey yk)7

given the current set of measurements y, ..., yx, with ¢x1 > t > t;. This filter
distribution is obtained as follows. Starting from the initial condition P,(x)



at time ¢y < t; and between measurement times, Pp(x,t) solves the forward
Kolmogorov equation (see Risken, 1984)

A

0, Pr(x,t) = L(t)Pr(x,1), (7)

where L(t) = —Vy[f(x,1)(-)] + V<V 1:[D(x,1)(-)] is the Fokker-Planck op-
erator. At measurement times t,,,, m = 1,..., M, Pr(x,1t) satisfies the forward
“jump condition”

PF(X, tm+) =
exp[y;m R h(%,tm) = $h T (%,tm )R h(x,tm
W(yl"",ym)

)]PF<X, tm—), <8)

where —, 4+ denote times just before and after the measurement, respectively.
W(y1,...,¥m) is the normalization factor that ensures that Pp(x,t,,+) inte-
grates to one. Notice that measurements are used sequentially to obtain the
filter distribution Pg(x,t). Once the conditional distribution is known, its
first two moments, xp(t) = [ dx xPp(x,t) and Cp(t) = [dx (x —xp(t))(x —
xp(t)) T Pr(x,t), give the filter mean and covariance.

The optimal smoother distribution Ps(x, t) is similarly obtained, by an adjoint
algorithm due to Pardoux (1982): Starting from a final condition Ag(x,ts) =1
at a time ¢y > t) and in reverse in time between measurements, one solves
the backward Kolmogorov equation (see Risken, 1984)

O Ag(x,t) + L*(t)As(x,t) =0, (9)
in which L*(t) = f(x,1)-Vx + D(x,1):V4 V] is the adjoint Fokker-Planck

operator. At measurement times t¢,,, m = 1, ..., M the backward “jump condi-
tion” is imposed:

AS<X7 tm_) =
Ag(x,t+)

(10)

exp|ym R B(x,tm) = 3h T (X,tm) Rz h(X,tm) |
W(yl,...,ym) :

Here W(y1, ..., ¥m) is the same normalization factor as determined for the for-
ward jump condition, which must be stored for use in the backward evolution.
The distribution Ps(x,t) = P(x,t|y1,...,yu) conditioned on the entire set of
available measurements is finally obtained from the product

Ps(x,t) = Ag(x, 1) Pp(x, t). (11)

Jump conditions (8),(10) together imply that Ps(x,t) is continuous in time.
The moments xg(t) = [dx xPs(x,t) and Cg(t) = [dx (x — x5(t))(x —



x5(t)) T Ps(x,t) give the smoother mean and covariance.

The solution algorithm outlined above will be termed the Kushner-Stratonovich-
Pardoux (KSP) method, since those authors first developed it instead for the
(more difficult) case of continuous-time measurements. The simpler case of
discrete-time measurements, discussed above, was treated in Jazwinski (1970)
for the filtering part of the algorithm and in Appendix I of Eyink (2002) for the
smoothing part. This method provides not only the conditional mean and co-
variance, xg(t) and Cg(t), but even the entire conditional distribution Ps(x, t)
instantaneously at time ¢. This is almost all that one could wish. However,
this is not so for certain purposes. A conditional mean history xs(¢) could be
very atypical and unrealistic, as was emphasized long ago by Leith (1974). Its
properties might be very misleading as an indicator of the behavior of individ-
ual realizations. For some purposes, it might be useful instead to have a way
of selecting some representatives from an ensemble of histories conditioned on
the measurements. Techniques for doing so can be developed using methods
related to those in this paper (see Alexander et al., 2002), but this will not be
discussed here.

However, the KSP method, while giving the optimal solution of the problem, is
computationally intractable when applied to realistic spatially-extended sys-
tems with many degrees of freedom. This was already pointed out long ago by
Kushner (1967a) himself. When (1) is a partial differential equation (PDE),
then the KSP forward and backward equations (7),(9) are functional differ-
ential equations for a solution which is a distribution on a function space.
There are a few exceptional situations where the optimal smoother is “finite-
dimensional” and its calculation reduces to solving PDE’s of a comparable
number of degrees of freedom as (1) itself. For example, when (1) is linear
and the model noise is additive, then the conditional distributions are Gaus-
sian and the means and covariances are equivalent to those obtained from the
Kalman filter and smoother. The latter require solving equations only of the
same dimension as (1) for the means and of the square of the dimension for the
covariance. However, in general there is no such exact simplification, and the
KSP method is impossible to apply without some simplifying approximation.

On the other hand, the KSP method gives the correct standard of comparison
for approximation methods, in the simple systems where it can be applied.
This point has already been made in a recent paper by Miller et al. (1999),
where the Kushner-Stratonovich filter was calculated for some simple models:
the double-well model, which is also considered in this work, and the 3-mode,
chaotic Lorenz model. This is also the point of view adopted here. We shall
compare results of all of our approximation schemes with the exact conditional
statistics provided by KSP. In fact, we wish to emphasize the importance of
this comparison. It is common practice to judge the “success” of a data assimi-
lation scheme based upon its ability to recover a single, particular realization,



after the values of the latter at a few points have been contaminated with
random errors and measured. In fact, this is a faulty test of the success of an
estimation scheme whose goal is the calculation of conditional statistics. An
assimilation method which, for a particular realization, happened to repro-
duce it better, might actually be inferior to one which gave a result further
from that realization but closer to the conditional average. For systems with
random noise or with deterministic chaos it is impossible in principle to set
the goal of recovering each individual realization from partial and imperfect
information about it. It is only meaningful to search for statistical information
about the system: a variance-minimizing estimate and a measure of the pos-
sible spread in the ensemble. In the case of large, spatially-extended systems
where it is impossible to calculate such conditional statistics exactly by KSP,
it is only possible to compare the results of different approximation schemes
with each other. Only in this way can it be determined if the results of any
(or none) of the approximations is likely to be accurate.

The KSP method can also be a guide to constructing suitable approximation
schemes, because it provides itself the correct optimal solution to the problem.
It therefore gives some idea of the ingredients which must go into any successful
approximation. We see that the KSP calculation algorithm divides neatly (for
discrete-time observations) into two distinct elements: dynamical evolution
provided by the Kolmogorov equations (7),(9) and statistical conditioning
provided by the “jump conditions” (8),(10) at the measurement times. In the
traditional terminology of data assimilation, the latter is called the “analysis”
of the estimate and the observation. In this paper we consider approximation
schemes for the analysis step of the estimation problem.

3 Analysis Approximations
3.1 Mean-Field Conditional Analysis € Statistical-Mechanics of Histories

Rather than imposing the observations as exact conditions, one can instead
employ them in a mean-field manner. Let {x™(t) : t € [to,t;]}], for n =
., N, be an ensemble of solution histories of the equation (1) for N initial

data x(()"), n =1,..., N, chosen independently from the distribution F,. Let

1 N
=N > x" (12)

n=1

be the empirical ensemble—avemge formed from the N independent sample
realizations. Likewise, form p}) = + LN pi™ an N-sample average of inde-



pendent measurement errors for each ensemble realization at time t,,. Then

Y (tn) = H(tm)X" (tm) + P, (13)

is an N-sample average measurement. We take as a suboptimal smoother
estimate the conditional mean

x.(t) = lim E[x(®)|y" (t) = y1,-.,¥" (tnr) = yu] (14)

N—oo

and the conditional covariance matrix

C.(t) =

(15)
limy o0 E[(x (1) — x.()) (x(t) = % () |7V (t1) = y1, -, ¥ (tmr) = yual.

We emphasize that, in our mean-field approximation, y;, ..., ys are the actual
values obtained in a single set of measurements, not in an ensemble of such
measurements. N-sample ensembles are only introduced in this approxima-
tion scheme for theoretical purposes and are never employed in its practical
implementation. An advantage of this approximation is that the conditional
mean (14) and covariance (15) can be obtained from a thermodynamic formal-
ism, as the minimizer and inverse Hessian, respectively, of a certain “entropy
function” H,(x1,...,Xar)-

We explain briefly the relevant statistical mechanics on time-histories. Details
may be found in Eyink (2002). Let us denote by P[{x(t) : t € [to,t]}] the
distribution on path-space of the entire history. It is formally given by a path-
integral formula (cf. van Leeuwen and Evensen (1996), Eq.(15)):

P{x(t) : t € [to, t7]}] (16)
exp { =1 Ji dt [x(t) — £(x,1)] "D~ (x, 1)[k(t) — £(x,1)]} .

For N independent samples of the process, the distribution is given by the
product-measure POV [{xM)(t), ..., xM)(t) : ¢ € [to, t;]}] = TT2; P{x™(¢) :
t € [to,tf]}]- The N-sample distribution conditioned on empirical sample-
means at a sequence of times,

P®N[{x(1)(t), ey X(N)(t) te [to,tf]}\YN(tl) = X1, .., X (tar) = Xag], (17)

is analogous to a “microcanonical distribution” in equilibrium statistical me-
chanics. In the limit N — oo it becomes equivalent to a corresponding “canon-



ical distribution” of product-measure form:

ﬂ PUx™(1) ¢ € [to, 7]} Aty ooy Ana] (18)

where the factors are

P{x(t) : t € [to, t7]}; ALy ooy Ant] =

exp[zzl\m/[:1 )\; x(tm

) (19)
e LUx() st e [t ]}

and Nx (A, ..., Ay) is the normalization integral to ensure total unit probabil-
ity. The appropriate values of Ay, ..., Ajy; are determined by a thermodynamic
argument. Define a convex cumulant generating function

FX()‘la g ) AM) ::logNX(Ala g ) AM)

=log{exp[ 3 ATx(tm)])- (20)

m=1

analogous to the “free-energy” in equilibrium statistical mechanics. Its pth-
order partial derivatives are the pth-order cumulants of the random variables

x(t1),...,x(tpr). In particular, x,, = %(Ab---)\M) is the mean of x(t,,)
and C(ty,, t,) = %(Al, ...y Ayr) the covariance of x(t,,),x(t;») in the
canonical distribution. The Legendre transform
M
Hx(x1,...,Xy) = _max {Z X;Am—FX(M,---a}\M)} (21)
A1a"'aAM m=1

is called the multi-time (relative) entropy. The values of Ay, ..., Ayy which ap-
pear in the “thermodynamic limit” of the microcanonical distribution are
those at which the maximum in (21) is achieved. Equivalently,

_ OHx

Am— m(Xl,...,XM), m = 1,...,M. (22)

The minimum of the convex entropy Hx occurs for the mean values Xy, ..., X/
of x(t1), ..., x(tas) in the original distribution (with all Ay = --- = Ay = 0).
The entropy is also a generating function for so-called irreducible correlation

2

functions of x(t1), ..., x(tpr). In particular, T'(t,,, ty) = 6fmgf ~(X1, ..., Xu) 18

the inverse of the covariance matrix C(ty,, t,y)-

The conditional mean x,(t,,) and conditional covariance matrix C,(tn,t,)
from (14),(15) can be obtained similarly as the minimizer and inverse Hessian,

10



respectively, of a joint entropy H.(xi,...,Xm) = Hxy (X1, e, Xp3 Y15, Y M)
for both state variables and observations:

H*(Xl, ceey XM) = HX(XI; ceey XM)+

(23)
% Z%:l[ym - H<tm)xm]TR;11 [Ym - H(tm)xm]'

The additional contribution to the cost function arising from the measure-
ments is quadratic because of the assumptions of Gaussian-distributed ob-
servation errors and of linear measurements. Our goal is to calculate H,, to
minimize it, and to calculate its Hessian.

We must first calculate Fx and then Hx. It turns out that there is an algo-
rithm to do this, based upon the forward and backward Kolmogorov equations
(7),(9). To calculate Fx(Aq, ..., Apr) we need only to solve the forward equation
(7). At measurement times, the solution satisfies jump conditions

B}
Al

P(X, tm+) = m

P(x,t,—), m=1,..M, (24)

where W (t,,—) is the normalization integral. From it we form

(AF) (A1, ooy Amn) :=1og W (t,—)
= log (/ dx eA;xP(x, tm—)) . (25)

Whereas the dependence upon \,, is explicit, note that the dependence upon
the remaining variables Ap, ..., Aj—1 is only implicit through P(x,t,—). Fi-
nally, we obtain

Fx(Al,...,AM) == % (AF)m(Alaa)\m) (26)

m=1

by summing up the contributions from each of the measurement times. Having
determined Fx (i, ..., Ayr), the entropy Hx (X1, ...,Xs) can then be obtained
by carrying out the maximization in the Legendre transform formula (21). To
do so by a descent algorithm requires having also the derivatives

_ OFx

Xm = m(Al,...,AM), m = ]_,...,M. (27)

This may be calculated by an adjoint algorithm using the backward Kol-
mogorov equation (9). At measurement times, the solution now satisfies jump

11



conditions

e)\,Tnx
A(X ty—) = mA(x, tm+)- (28)

We obtain finally x,, := x(t;,; A1, ..., Ayr), m = 1,..., M, with the latter given
by

(£ Ay ooy Ar) = / dx xA(x, t)P(x, 1). (29)

for all times ¢t € [t;,t¢]. For the values A}, ..., A}, corresponding to the min-
imizer x7,...,x%; of H.(x1,...,Xu), then x,(t) = x(t; A], ..., A\};) gives the
smoother estimate at all times.

It is sometimes advantageous to formulate the problem in terms of a cost
function which depends upon the entire time-history {x(t) : ¢ € [to,]}]. Such
a functional I'x[x] exists and is called the effective action. (See Eyink, 2002).
The minimizer of the effective action is the average history {X(t) : t € [to, 7]}
%[ﬂ at the minimum is the
inverse of the 2-time covariance matrix C(t,t') = ([x(t) —x(¢)][x(#') —x(t')] ).
The effective action is related to the M-time entropy by the formula

in the absence of measurements. Its Hessian

Hx (X1, ...,Xp) = min I x[x], (30)

{x:x(tm)=%m ,m=1,....,M}

where the minimum is over all histories that satisfy the constraints. This for-
mula is a particular case of a general result in large deviations theory, called
the Contraction Principle (Varadhan, 1984). To obtain the entire optimal his-
tory {x.(t) : t € [to,1f]}], including times intermediate to measurements, one
can minimize a joint effective action I',[x] := I'x y[x, y] for both the state and
the measurements. Analogous to (23), this is given by

Lx] =Tx[x] + % Zl[ym — H(tm)X(tn)] Ry [ym — H(tm)x(tm)]  (31)

in the case of normally distributed observation errors and linear measure-
ments. In this situation of discrete-time measurements, the continuous-time
optimal history {x.(t) : ¢t € [to,tf]}] obtained as minimizer coincides with
that given by equation (29). The conditional covariance matrix C,(t,t') at
all continuous times may also be obtained from the inverse Hessian of I',[x].
The resulting formalism appears very similar to the so-called “4D-VAR” data
assimilation scheme which is currently practiced at many operational fore-
cast centers around the world (Courtier et al., 1993). However, its statistical

12



basis and interpretation is entirely different. The “4D-VAR” approach is a
maximum-likelihood estimation scheme, based upon minimizing the “bare”
action in the exponent of (16) (along with suitable terms for measurements,
as in (31)). Thus, it seeks the conditional mode, rather than the conditional
mean. The effective action employed in our “mean-field” approach bears the
same relation to the “bare” action used in 4D-VAR as does a macroscopic
entropy or Gibbs free-energy to a microscopic Hamiltonian, in the analogy to
Gibbsian equibrium statistical mechanics.

If we compare the computational algorithm which results from our “mean-
field” approximation to the exact conditional analysis in KSP, we arrive at the
somewhat paradoxical conclusion that it is even more difficult to apply than
the exact method. Just as for KSP, the forward and backward Kolmogorov
equations (7),(9) must be integrated. However, in the scheme discussed here,
one such integration yields just Fix(Aq, ..., Ay) and x(¢; Aq, ..., Aps) at the cur-
rent values of the “thermodynamic fields” A, ..., Aps. One must evaluate these
many times in order to apply any minimization algorithm to determine the
optimal fields AJ, ..., A}, required for the final estimate. The simplification
achieved by the mean-field approximation lies in the jump conditions (24),(28).
Compared with the exact jump conditions (8), (10), these involve only linear
functions of the measured variable h(x,?) in the exponent, whereas KSP—
for Gaussian observation errors—requires quadratic functions of h(x, ¢) in the
exponent. In fact, the mean-field conditional analysis requires only linear func-
tions of the observation variable in the exponent even if the observations are
not Gaussian-distributed. This simpler form of the jump conditions at mea-
surements will allow for simplified closure approximations to the evolution.

3.2 Variance-Minimizing Linear Analysis

The most common analysis currently employed in practical assimilation meth-
ods is a variance-minimizing linear analysis. In such schemes, the analysis state
X, (t) is taken to be a linear combination of the forecast state x;(¢) and the
measurements yi, ..., Y, represented schematically as:

x, = Xy + K[y — Hxy], (32)

where K is a suitable matrix. For example, in a Kalman filtering scheme,
Xf(ty) is the forecast obtained by integrating the model equations or an en-
semble average of such model solutions, and, for each m, K is a d x s matrix
called the Kalman gain. d is the dimension of x(¢,,) and s the dimension of
Ym. The matrix K is then chosen, sequentially for each time ¢,,, so that the
variance (|x,(t,) — x(¢,)|*) is minimized, within the ansatz (32). This leads
to well-known formulas and algorithms for calculating the Kalman gain. In

13



a Kalman smoothing scheme, the analysis such as (32) might hold for x,(¢)
at all times ¢ together and for the entire set of M measurements yi,...,yu
simultaneously. In that case K will be a (T'd) x (M's) matrix, where T is the
total number of time points considered in the calculation. The forecast state
x; might be, for example, the unconditioned ensemble average. Again, the
variance-minimizing condition yields a formula for K. This is embodied in the
so-called “representer method” for calculating the least-squares estimator or
Kalman smoother (e.g. see van Leeuwen and Evensen (1996), Section 3(b)).

The variance-minimizing linear analysis is known to reproduce the exact con-
ditional statistics for the case of linear dynamics and additive, Gaussian noise.
However, for nonlinear dynamics and for non-Gaussian statistics and/or mul-
tiplicative noise, the linear analysis is only an approximation. It may be a
very poor one for highly non-Gaussian distributions, e.g. multimodal ones, as
discussed in a recent paper of Evensen and van Leeuwen (2000). Our mean-
field method leads to such a linear analysis, if the effective action is Taylor-
expanded to quadratic order. Indeed, recall that the effective action is the
generating function of so-called “irreducible correlation functions”, and, in
particular, its Hessian T'(¢,#') = C~!(¢,t'), the (operator) inverse of the 2-
time covariance (Eyink, 2002). In that case, the cost function to be minimized
in quadratic approximation is just

TP x] =1 [ at [ dt' [x(t) — <)) TT(t, ) [x(#') — %()]

i

(33)
1M iy — Htn)x(tn)] R Ym — Htn)x(4)]

and this coincides exactly with the expression in equation (19) of van Leeuwen
and Evensen (1996), from which the representer solution to the Kalman smoother
is derived. This observation should give some insight into the limitations of the
linear analysis: it neglects the contributions of the terms of greater than degree
two in the action, corresponding to higher-order cumulants of the distribution.
This is one reason to expect our mean-field analysis will likely work better for
strongly non-Gaussian statistics than will the linear analysis. In addition, the
mean-field analysis is still a conditional analysis, although a suboptimal one.
If transitions between states in the dynamical system (1) occur typically by
some characteristic routes or “optimal paths”, then one should not expect the
mean-field conditioning to differ much from the exact conditioning. In general,
it will be a little “weaker” than the true conditional analysis, but still more
effective than the linear analysis. This point is made in greater detail in Eyink
(2002), where it is explained how the mean-field conditioning corresponds in
general to a larger subensemble than the exact conditioning.
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4 Results for a Model Problem

Here we compare our mean-field conditional analysis directly with an exact
conditional analysis. We consider as our example of data assimilation in a
strongly nonlinear system the stochastically forced double-well system (see
Miller et al. (1994), also Eyink and Restrepo (2000)):

&(t) = f(x(t)) + rn(t) (34)
where
f(z) =4z(1 — 2?) (35)

and n(t) is white-noise, with zero mean and covariance (n(t)n(t')) = 6(t — t').
As in Miller et al. (1994), we take x = 0.5. Note that f(z) = —U’(x), where
U(z) is the double-well potential

Ulr) = —22° + 2* (36)

with minima at # = £+1. The solution x(t) of (34) executes small fluctuations
about the minima in one of the wells with rather long residence times and,
then, more rarely, experiences large fluctuations leading to a transition into
the other well. The steady-state probability distribution of the model, Ps(z) o
exp (—%(f)) , is bimodal with peaks at = =+1, the two fixed points of the
deterministic dynamics.

We shall now consider results of data assimilation experiments for this model.
As a sample history we shall use the same one that appeared in Figure 1 of
Miller et al. (Miller et al., 1994), which is plotted in our own Figure 1. This

2.0

0.0

state x

. . .
0.0 2.0 4.0 6.0 8.0
time t

Fig. 1. Sample history.
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choice shall allow us to compare the performance of our methods with those
studied in Miller et al. (1994). The history adopted from that work is a solution
of our model equation (34) for a particular initial condition and realization of
the random noise. In terms of our experiment, this history represents “real-
ity”, i.e. the actual course of the system over time. However, this history is
only imperfectly known from observations. We have generated sets of “mea-
surements” by sampling the history at unit time intervals and adding to those
values Gaussian random variables, which represent “observation errors”. The
observation errors are chosen independently at each measurement time, with
mean zero and variance R. We consider several choices of the latter. Note that
the standard deviation v/R x 100% represents the rms error expressed as a
percentage of the size of the equilibrium states at +1.

4.1 FEzxact Conditional Analysis

We first describe the exact conditional statistics for the various sets of mea-
surements. We obtain these statistics by solving the KSP equations, (7),(9),
with jump conditions (8),(10). We solved the forward equation (7) numerically
by the algorithm in Larson et al. (1985), which guarantees positive solutions
and long-time convergence to the correct equilibrium solution P;(z). The algo-
rithm was implemented on the z-interval [—3, 3] with probability-conserving,
zero-flux boundary conditions. We solved the backward equation (9) by the
corresponding adjoint algorithm. The space grid-spacing Az = 0.09375 and
time-step At = 0.01 were employed in integrating both equations. For further
details, see Alexander et al. (2002).

The first set of “measurements”, which we shall call dataset A, were generated
by adding to the reference history at unit intervals a particular set of realiza-
tions of Gaussian errors with R = 0.04, i.e. 20% rms errors. These simulated
measurements are plotted in Figure 2. In the same figure we plot as a solid line
the mean history conditioned on the measurements and, as a pair of dashed
lines, the mean history plus or minus the standard deviation in the ensem-
ble conditioned on the measurements. The mean history gives the “expected”
history conditioned upon the observations. It should be kept in mind that it
may represent very atypical behavior for actual realizations and only gives the
average effect. Realizations which vary from the mean by only two or three
standard deviations will have a reasonable probability of occurrence. Thus,
the range of variations of typical realizations in the conditional ensemble is
roughly indicated by the dashed lines. It is clear from the Figure 2 that these
conditional statistics capture very well the transition that occurred around
time ¢ = 3-5 in the history of Miller et al. (1994). On the contrary, the subop-
timal methods discussed in Miller et al. (1994)—the Extended Kalman Filter
and a least-squares variational or Maximum Likelihood Estimator—failed to
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2.0

state x

0.0 2.0 4.0 6.0 8.0

Fig. 2. Exact conditional analysis, using dataset A (20 % rms error) represented by
filled circles. Solid line: mean, dashed line: mean + standard deviation.

track the transition with similar measurements of 20% accuracy spaced at unit
intervals.

In practice, it is difficult to know how large the errors in observations may be.
Although the measurements marked by filled circles in Figure 2 were, in fact,
generated by adding Gaussian random errors with R = 0.04, in a real assimila-
tion experiment one might not have a good idea of the size of the observation
errors. Therefore, we consider in Figure 3 the results of the KSP equations
for a dataset B, with the same observations as before but with assumed error
variance R = 0.16, i.e. 40% observation error. Clearly, the conditional statis-

2.0

state x

2.0 1 1 1
0.0 2.0 4.0 6.0 8.0

Fig. 3. Exact conditional analysis, using dataset B (40 % rms error) represented by
filled circles. Solid line: mean, dashed line: mean + standard deviation.

tics have changed very little by changing R. Only the conditional variance
has increased slightly, as would be expected with measurements assumed to
be less accurate. In fact, with the given set of measurements, the conditional
statistics show very little change even up to R = 1.00, or 100% observation
error. The conditional variance steadily increases as R increases, but the con-
ditional mean continues to track well the transition (see Eyink and Restrepo,
2000). Only for R > 1.00 is it possible to begin to confuse a measurement in
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one well for a value in the well on the other side. This stability of the condi-
tional statistics against changes in the presumed size of observation errors is
an important virtue as an estimation tool.

In Figure 4 we show more evidence of this stability. Plotted as filled circles

2.0

state x

-2.0 . .
0.0 2.0 4.0 6.0 8.0

Fig. 4. Exact conditional analysis, using dataset C (20 % rms error) represented by
filled circles. Solid line: mean, dashed line: mean + standard deviation.

there is another independent set of observations, generated as for dataset A
by adding Gaussian errors with R = 0.04, or 20% rms errors. We call this
dataset C. In this case, we see that the errors tended to reduce the magnitude
of all the measured values of the history toward zero. In general, with every
different set of measurements on the same history, corresponding to different
realizations of the observation error, there will be a different set of conditional
statistics. However, as shown in Figure 4, the conditional statistics for this
new set of observations are not very different from those shown in Figures 2
and 3. Thus we see that the conditional statistics possess remarkable stability
to small changes in the measured values or one’s assessment of the size of
observation errors. Clearly, this statistical stability is a very desirable feature
for any approximate data assimilation method to preserve. Unfortunately, the
standard techniques reviewed in Miller et al. (1994) did not show such stability
and might either follow or not follow the transition, depending sensitively upon
the presumed value of R.

In Figure 5 we plot a dataset D in which measurements are generated by
adding Gaussian errors with R = 0.09, or 30% rms errors. In this case, for
the particular set of measurements indicated, the conditional statistics track
the transition that occurred in the actual history through the first subsequent
measurement but lose it thereafter. The conditional mean then becomes close
to zero and even slightly positive, whereas the actual history after the transi-
tion was in the well at © = —1. Another example of this is shown in Figure 6,
for a dataset E, which was generated from the history by adding errors with
R = 0.36, or 60% rms errors. In this case, the conditional mean does not
indicate a transition at all, except for a slight lowering of its value from near
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Fig. 5. Exact conditional analysis, using dataset D (30 % rms error) represented by
filled circles. Solid line: mean, dashed line: mean + standard deviation.
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time t

Fig. 6. Exact conditional analysis, using dataset E (60 % rms error) represented by
filled circles. Solid line: mean, dashed line: mean + standard deviation.

1.0 before the transition to about 0.6 afterward. It must be emphasized: this is
not a failure of the KSP assimilation algorithm. In fact, using exact dynamics
and exact conditioning upon the measurements produces the optimal results.
No other information can be assumed to be given about the history other
than the measurements indicated by the filled circles. Therefore, the transi-
tion that occurred in the actual history, with such poor measurements as given
in datasets D and E, is irrecoverably lost. The conditional statistics shown in
Figures 5 and 6 indicate that, for the ensembles of histories and observation
errors that produce the given set of measurements, there are a majority of
members in which the transition was either followed by a switch back to the
other well (dataset D) or in which no transition occurred at all (dataset E). In
the cases discussed here, the sample history in which the transition occurred is
somewhat atypical of a general member of the conditional ensemble. In both
Figures 5 and 6, a large increase in the conditional variance does occur after
the transition in the sample history. Thus, the conditional statistics indicate
a virtually complete loss of predictability after a time about t = 6 in Figure
5 and ¢t = 4 in Figure 6. The sample history, although somewhat atypical,
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is well within the range of allowed variation of members of the conditional
ensemble (plus or minus a few standard deviations from the mean). The con-
ditional statistics, for this set of poor measurements, indicate an intrinsic and
irremediable uncertainty about the future state of the system.

The goal of any approximate data assimilation technique is not to recover this
or that particular history, from which measurements are generated by adding
observation errors. In fact, the only correct and achievable goal is to recover
the conditional statistics—such as the conditional mean and variance—given
the particular set of observations. Any assimilation method which yielded an
estimate following the transition in our sample history using only datasets D or
E would, in fact, be inferior to one which followed instead the conditional mean
and failed to show a transition. The only way that any assimilation method
could track the transition is by sheer chance or by surreptitiously employing
more information from the sample history than that given in datasets D or E.
Needless to say, in a real assimilation experiment, one does want to recover
the actual history, but only by virtue of calculating correctly the conditional
statistics. Such statistics as shown in Figures 5 or 6 would indicate the need
for acquiring either more accurate measurements or additional measurement
data, in order to recover the actual history. This is the only information one
can hope to gain from a successful data assimilation method in these cases.

4.2  Mean-Field Conditional Analysis

We now describe the results of our assimilation experiments using the exact
dynamics, but the mean-field conditional analysis. As discussed in subsection
3.1, the mean-field conditional statistics are obtained by solving the exact
Kolmogorov forward and backward equations, (7),(9), but with the jump con-
ditions (24),(28) at measurement times, involving the “thermodynamic fields”,
Am m =1,..., M. From one forward and backward integration of these equa-
tions, one obtains the “multi-time free energy” function Fy ()i, ..., A\y) and
its gradient. To obtain the conditional mean history z,(t), one must solve the
following minimax problem

* * 0\ g
H*(Z'l, sy mM) - mlnxl,...,wM max)\l,...,)\M

(37)
_ 2
{2%21 xm)‘m - FX<)\11 ceey AM) + 2%21 %} )
where y,,, m = 1,...,M are the measured values and R,,, m = 1,... M
are the error variances of those measurements. Indeed, carrying out the in-
side maximization over Ay, ..., Ay gives H.(z1,...,xy) = Hx(x1,...,xp) +
2
M % [see (21)] and carrying out the outside minimization then de-

termines z7, ..., x3,. At measurement times z,(t,,) = x},, m = 1,..., M, while
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values at intermediate times are determined from (29). We also wish to have
the conditional variance ¢2(t). For this, we calculate the Hessian (') =
0*H, /02, 0%y (23, ...,x%;) and then obtain the variance from the diagonal
elements of the inverse Hessian matrix 02(¢,) = (I',')mm. To obtain o2(t)
at selected times t intermediate to the measurement times, we insert a set
of “pseudo-measurements” at those times with infinite variance. Note that
the gradient 0H, /0x., (1, ..., xpr) is just Ay (1, ..., xpr), which is provided by
the inside maximization step in (37). Hence it is straighforward to calcu-
late the Hessian by a finite-difference approximation of the first-derivatives

O\ [ O (75, oy Ty )

It is noted that it is easy to calculate the inverse for our simple 1-variable
model, in which case the Hessian is an M x M matrix. In realistic applications
of our method to large-scale systems we would instead use a method based
upon the Contraction Principle which would eliminate the need to calculate
such inverses. See Eyink et al. (2002b).

We have carried out these calculations numerically, using the same algorithm
as in section 4.1 (see Larson et al., 1985) to integrate the Kolmogorov equa-
tions. The nested optimizations in (37) were each performed by a conjugate-
gradient algorithm. To obtain the Hessian we used a 2nd-order accurate finite-
difference approximation to the first derivatives 9\, /02,y and then found the
inverse Hessian matrix by LU-decomposition.

The results of these calculations are as follows:

In Figure 7 we plot the dataset A and, for it, the mean-field conditional statis-
tics: the mean, x.(t), and the mean plus or minus the standard devation,
2. (t) £ 0.(t). If we compare with the exact conditional statistics in Figure 2,
we see almost perfect agreement. The only discrepancy is around the time of
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Fig. 7. Mean-field analysis, using dataset A (20 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard deviation.

the 5th measurement, where the measured value is about —0.7. In fact, this
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good agreement should be expected. Except for the 4th and 5th measurements,
all of the measured values are either bigger than 1 or less than -1. But when
|Ym| > 1, the mean-field conditions TV (¢,,) = v,, will only be satisfied if, in
almost every member of the N-sample ensemble, 2 (t,,) & ¢, n=1,..., N.
Indeed, the dynamics does not allow a history z(t) to achieve frequently any
values much greater in absolute value than 1. Therefore, if (™ (t,,) differed
much from ¥, at all, it would very likely be that z(™(t,,) is either smaller
in magnitude than y,, or even of the opposite sign. But if that were true
for a finite fraction of ensemble members n, then it could not be true that
TN (tm) = Ym. Therefore, when |y,,| > 1, the mean-field conditioning is almost
the same as the exact conditioning.

In Figure 8 we plot dataset B and its mean-field conditional statistics. Now
the measurements are assumed to have 40% rms error, so that the conditions
TV (tm) = Ym, m = 1,..., M are less strictly enforced. Here we see a larger
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Fig. 8. Mean-field analysis, using dataset B (40 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard deviation.

departure from the exact conditional statistics in Figure 3. The mean history
at the initial and final times takes on values slightly smaller in magnitude for
the mean-field conditioning than for the exact conditioning. Also, the variance
increases in dataset B for both conditional analyses compared to the variances
for dataset A, but the increase is greater for the mean-field conditioning.
Still, the crucial point is that the transition which is observed in the exact
conditional statistics is well-preserved in the mean-field conditional statistics
also. This remains true up to larger values of measurement error variance near
1.00 (see Eyink and Restrepo, 2000).

For dataset C in Figure 9 we see larger departures of the mean-field conditional
statistics from the exact conditional statistics in Figure 4. In fact, for the exact
conditional mean the starting value is near 1.0 and the final value near -1.0,
but the mean-field conditional average has starting value near (.75 and final
value near -0.50. This discrepancy is easy to understand. The difference from
the dataset A is that now |y,| < 1 for all m. For the exact conditioning,
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Fig. 9. Mean-field analysis, using dataset C (20 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard deviation.

T(tm) + pm = Ym at each m'"* measurement, where p,, is the error there.
However, for a single history z(¢) to achieve a value with magnitude much less
than 1 is unlikely. Hence, even though the rms error variance is small, 0.04, the
exact conditioning assumes that x(¢,,) is near +1 for each m and that there is a
large error p,,. However, the mean-field condition is that TV (t,,) + 7% = y, for
each m. In contrast to a single history, the N-sample ensemble average Z" (¢)
can easily become small, because values of the samples 2™ (t), n = 1,...,N
with values all near +1 can cancel in the sum. Thus, there is no high cost
in the mean-field conditioning for z"(¢,,) ~ v,, and instead the mean errors
pN are assumed small. The consequence is that the average history with the
mean-field conditioning stays very near the measurements, but the average
history with the exact conditioning prefers to stay near the stable values +1
at the minima of the double well potential. Despite this discrepancy, the mean-
field conditional statistics are still successful in tracking the transition which
is observed in the exact conditional statistics. The mean-field conditioning is
therefore qualitatively successful here, although not as accurate quantitatively
as before.

For dataset D in Figure 10 we see a different phenomenon. In this case, the
expected history with the mean-field conditioning is quite close to that for the
exact conditioning, shown in Figure 5. The only discrepancy of reasonable
magnitude is near the fifth measurement. However, there is a much greater
difference in the variances for the two conditional analyses, after that mea-
surement. The exact conditional statistics show then a large increase in the
variance, while the mean-field conditional statistics show a much smaller in-
crease. This can be understood technically from the remark that, for the mean-
field analysis, the covariance (T.)mm = Tt + By 0 > R 0y in the
matrix sense. Thus, 02(t,) = (T;")mm < Ry, for each m. It follows that at
each measurement time with dataset D, o.(t,,) < 0.3, m =1, ..., M and the
value can only slowly increase between measurements. Just as for dataset C,
we see that the mean-field conditioning assumes that measurement errors are
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Fig. 10. Mean-field analysis, using dataset D (30 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard deviation.

small and the ensemble histories are closer to the measured values, whereas
the exact conditioning prefers to assume that measurement errors are large
and thus ensemble members are dispersed more widely about the measured
value. Nevertheless, the mean-field conditional statistics do preserve the main
features observed in the exact conditional statistics for dataset D: the tran-
sition is tracked through the first subsequent measurement and then lost. In
both cases, typical ensemble members show a transition from 1 to —1 and
then a switch back to the well at 1.

Figure 11 for dataset E combines the features of the two previous examples:
the mean-field conditioning produces both a smaller magnitude of the mean
history (due to measured values with magnitudes < 1) and also smaller vari-
ances at late times (due to assumed smaller observation errors) than the exact
conditioning in Figure 6. Still, even in this worst case, the expected history
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Fig. 11. Mean-field analysis, using dataset E (60 % rms error) represented by filled
circles. Solid line: mean, dashed line: mean + standard deviation.

with the mean-field conditional analysis shows a similar trend as does the ex-
pected history with the exact conditional analysis. One should keep in mind
that the observation errors are quite large here, 60%, larger than one would
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hope to have in practice. Nevertheless, we believe that it is important for data
assimilation schemes to work, i.e. give accurate results for conditional statis-
tics, even when presented with very poor measurements. In the first place, it
is not possible in many applications to know really how good measurements
may be, and then a conservative assessment of their accuracy is prudent. In
the second place, relatively poor measurements may be all that one has in cer-
tain cases, and yet one would still like to glean what information they contain
about the past or future behavior of the system.

5 Conclusion and Discussion

In this paper, we have studied conditional statistics of nonlinear dynamical
systems, in particular the mean and the covariance. These are argued to repre-
sent the logically correct solution to the problem of data assimilation or inverse
modeling in such systems. We have shown how to calculate conditional prob-
ability distributions efficiently for systems with a small number of degrees-
of-freedom by solving the forward and backward Kolmogorov equations. The
observational data is incorporated in that case by “jump conditions” at mea-
surement times, which implement Bayes formula from probability theory. We
have, as well, proposed a “mean-field approximation” to this analysis step,
which can be formulated as a minimax variational problem. The calculation
of the cost function and its gradient requires also the solution of the forward-
backward Kolmogorov equations. Therefore, the mean-field approximation to
the conditional analysis is not, by itself, a practical method for application
to realistic, spatially-extended, nonlinear dynamical systems. Our purpose in
this paper has not been to test the mean-field approximation for practical
applications on its own, but instead to gain some understanding of the accu-
racy of the approximation. We have shown in the context of a simple model
problem with bimodal statistics, that the mean-field conditional analysis gives
a satisfactory approximation to the conditional statistics and is successful in
tracking mode transitions where more traditional methods fail. For practical
purposes, it would be realistic to apply the mean-field conditional analysis
in conjunction with moment-closure approximations to the dynamical evolu-
tion. That is the subject of follow-up papers Eyink et al. (2002a), Eyink et al.
(2002b).
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