Left-Right Twin Higgs Model in CalcHEP

Shufang Su • U. of Arizona

http://www.physics.arizona.edu/~shufang/twinhiggs.html

Code Writer: Hock-Seng Goh, Ethan Dolle, Shufang Su

<u>Will not discuss (in detail)</u>

- CalcHEP
 - http://www.ifh.de/~pukhov/calchep.html
- Left-Right Twin Higgs Model (LRTH)
 - Chacko, Goh, Harnik, hep-ph/0512088
 - H. Goh, SS, hep-ph/0611015

<u>Will discuss</u>

- New particles and model parameters
- SelcHEP model files
- Section A few words about usage in MicrOMEGAs

CalcHEP

A simple tool for simple-minded theorists

- Advantages:
 - easy to add new physics model
 - good for decay branching ratios, production cross sections
 - easy to use without program coding
- Disadvantages:
 - ⇒ only good for $1 \rightarrow 5$, $2 \rightarrow 4$
 - can not handle long cascade decay chain (can generate events, sent to other program for cascade

decay and hadronization)

Twin Higgs Mechanism

Higgs as pseudo-Goldstone boson of a global symmetry

Its mass is protected against radiative corrections

- Little Higgs mechanism: collective symmetry breaking
- Twin Higgs mechanism: discrete symmetry

Mirror symmetry

Type IA TH: Chacko, Goh, Harnik, hep-ph/0506256 Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/0510273 phenomenology: R. Barbieri, T. Gregoire and L. Hall, hep-ph/0509242

Left-right symmetry

Type II TH: Chacko, Goh, Harnik, hep-ph/0512088

Twin Higgs Mechanism

Higgs as pseudo-Goldstone boson of a global symmetry

Its mass is protected against radiative corrections

- Little Higgs mechanism: collective symmetry breaking
- Twin Higgs mechanism: discrete symmetry

Mirror symmetry

Type IA TH: Chacko, Goh, Harnik, hep-ph/0506256 Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/0510273 phenomenology: R. Barbieri, T. Gregoire and L. Hall, hep-ph/0509242

Left-right symmetry

Type II TH: Chacko, Goh, Harnik, hep-ph/0512088

Left-right Twin Higgs Model

• U(4) × U(4), with gauged SU(2)_L×SU(2)_R×U(1)_{B-L} + LR symmetry

Left-right Twin Higgs Model

Fermion sector:

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} : (\mathbf{3}, \mathbf{2}, \mathbf{1}, 1/3), \qquad L_L = \begin{pmatrix} \nu_L \\ l_{L\alpha} \end{pmatrix} : (\mathbf{1}, \mathbf{2}, \mathbf{1}, -1),$$
$$Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} : (\mathbf{3}, \mathbf{1}, \mathbf{2}, 1/3), \qquad L_R = \begin{pmatrix} \nu_R \\ l_R \end{pmatrix} : (\mathbf{1}, \mathbf{1}, \mathbf{2}, -1),$$

Top quark mass:

$$T_L = [1, 1, 4/3], \quad T_R = [1, 1, 4/3],$$
$$y H_R^{\dagger} Q_R T_L + y H_L^{\dagger} Q_L T_R + M \bar{T}_L T_R + h.c.$$

Top quark mass eigenstates: SM top and $t_{\rm H}$

Left-right Twin Higgs Model

Fermion sector:

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} : (\mathbf{3}, \mathbf{2}, \mathbf{1}, 1/3), \qquad L_L = \begin{pmatrix} \nu_L \\ l_{L\alpha} \end{pmatrix} : (\mathbf{1}, \mathbf{2}, \mathbf{1}, -1),$$
$$Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} : (\mathbf{3}, \mathbf{1}, \mathbf{2}, 1/3), \qquad L_R = \begin{pmatrix} \nu_R \\ l_R \end{pmatrix} : (\mathbf{1}, \mathbf{1}, \mathbf{2}, -1),$$

Top quark mass:

$$T_L = [1, 1, 4/3], \quad T_R = [1, 1, 4/3],$$
$$y H_R^{\dagger} Q_R T_L + y H_L^{\dagger} Q_L T_R + M \bar{T}_L T_R + h.c.$$

Top quark mass eigenstates: SM top and $t_{\rm H}$

New Particles

- Heavy gauge bosons: W_H, Z_H
- Heavy top: t_H
- Other SU(2)_R Higgses:
 [±]

 $\phi^{\mathbf{0}}$

 \hat{H}_{20}

Ĥ₁± • Other SU(2) Higgs

 $m^2_{WH,ZH} \sim g^2(f^2+\hat{f}^2)$

 $m^2_{TH} \sim M^2 + y^2 f^2$

 $m_{\phi\pm}^2 \sim g^4/(16\pi^2)\hat{f}^2 \log(\Lambda/g\hat{f})$

 $\mathbf{m}_{\phi \mathbf{0}}^{\mathbf{2}} \sim \mathbf{\mu}_{\mathbf{R}}^{\mathbf{2}} \left(\mathbf{\hat{f}} \mathbf{f} \right) \qquad \mu_{R}^{2} H_{R}^{\dagger} \hat{H}_{R}$

μ_R²: small, (50-100 GeV)²

 $m_{H1^{\pm}, H2}^{2} \sim \hat{\mu}^{2}$

 $\hat{\mu}$: soft symmetry breaking, O(f)

$$\hat{\mu}^2 \hat{H}_L^{\dagger} \hat{H}_L$$

Model Parameters and Mass Spectrum

- \hat{f} as a function of f (for given M, Λ) : para.data
- mass spectrum as a function of f (for given M, Λ, μ_R, μ̂): mass.data formulae for mass spectrum also available in hep-ph/0611015 S. Su

- Particles (parcls.mdl): define particles
- Variables (vars.mdl): "independent" model parameters
- Constraints (func.mdl): parameters that depend on variables in vars.mdl
- Lagrangian (lgrng.mdl): interactions

- Particles (parcls.mdl): define particles
 - Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

- Particles (parcls.mdl): define particles
 - Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

Full name | P |aP |number|2*spin| mass |width |color|aux|> LaTeX(A)<|>LaTeX(A+)<|

Heavy W	Wp Wn 92	2	MWH !wWH 1		W_H^+	W_H^-
Heavy t-quar	rk tH TH 93	1	MtH !wtH 3	İ	ΪΤ	T

- Particles (parcls.mdl): define particles
 - Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

- Particles (parcls.mdl): define particles
 - Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

- Particles (parcls.mdl): define particles
 - Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

- Particles (parcls.mdl): define particles
 - Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

- Particles (parcls.mdl): define particles
- Variables (vars.mdl): "independent" model parameters
- Constraints (func.mdl): parameters that depend on variables in vars.mdl
- Lagrangian (lgrng.mdl): interactions

- Particles (parcls.mdl): define particles
- Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

- Particles (parcls.mdl): define particles
- Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

Model parameters

Interactions: f, \hat{f} , M **Mass:** f, \hat{f} , M, μ_R , $\hat{\mu}$

CalcHEP parameters

800	f
4288.2	fhat
150	M
2407.44	mass for ZH
2013.13	mass for WH
812.188	mass for tH
536.828	mass for h1pm
536.028	mass for h20
115.868	mass for phi0
260.225	mass for phipm
175.46	mass of Higgs
	800 4288.2 150 2407.44 2013.13 812.188 536.828 536.028 115.868 260.225 175.46

- Particles (parcls.mdl): define particles
- Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

$\frac{\text{Model parameters}}{\begin{cases} f \\ M \\ A \\ \mu_{R} \\ \hat{\mu} \end{cases}} \hat{f}$ $\frac{\mu_{R}}{\hat{\mu}}$ Interactions: f, f, M $\text{Mass: f, f, M, \mu_{R}, \hat{\mu}}$

CalcHEP parameters

f1	800	f
f2	4288.2	fhat
MMp	150	M
MZH	2407.44	mass for ZH
MWH	2013.13	mass for WH
MtH	812.188	mass for tH
Mh1	536.828	mass for h1pm
Mh2	536.028	mass for h20
MAx	115.868	mass for phi0
MHR	260.225	mass for phipm
MH	175.46	mass of Higgs

- Particles (parcls.mdl): define particles
- Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

Model parameters

Interactions: f, \hat{f} , M **Mass:** f, \hat{f} , M, μ_R , $\hat{\mu}$

S. Su

<u>CalcHEP parameters</u>

f1	800	f
f2	4288.2	fhat
ММр	150	М
MZH	2407.44	mass for ZH
MWH	2013.13	mass for WH
MtH	812.188	mass for tH
Mh1	536.828	mass for h1pm
Mh2	536.028	mass for h20
MAx	115.868	mass for phi0
MHR	260.225	mass for phipm
MH	175.46	mass of Higgs

- Particles (parcls.mdl): define particles
- Variables (vars.mdl): "independent" model parameters
 - Constraints (func.mdl): parameters that depend on variables in vars.mdl
 - Lagrangian (lgrng.mdl): interactions

<u>Model parameters</u>	<u>CalcHEP parameters</u>
f ٦ _	f1 800 f
M > f	f2 4288.2 fhat
∧ J	MMp 150 M

Advantage: easy/straightforward to implement.

Disadvantage: need to change all parameters at once

- there is an easy way to do this using batch mode set_param
- values for typical choice of (f, M, Λ, μ_R, μ̂) can be found at para.data and mass.data (download from LRTH in CalcHEP website)

- Heavy top partner decay
- Heavy top partner pair production
- Use batch mode

A Few Words about using it in MicrOMEGAs

MicrOMEGAs:

- calculation of dark matter relic density using CalcHEP model file
- calculation of fragmentation photon from dark matter annihilation into W/Z

http://lappweb.in2p3.fr/lapth/micromegas/index.html

 $\hat{H}_{2}^{0} = (S+iA)/\sqrt{2}$

- |m_s-m_A|> a few GeV to avoid constraints from DM direct detection

Model files to be used in MicrOMEGAs will be ready in a couple of days.