Twin Higgs Model:

From Collider Phenomenology to Dark Matter Implication

Hock-Seng Goh, SS, hep-ph/0611015 E. Dolle, J. Goodman, SS, hep-ph/0703xxx X. Miao, SS, work in progress

- Fight Fight
 - * Twin Higgs mechanism
 - * Left-right Twin Higgs model
 - * New particles and model parameters
- Collider phenomenology
 - * Heavy top quark
 - * Heavy gauge bosons
 - * Higgses
- 🖗 Dark Matter
 - * Relic density
 - * direct and indirect detection

Twin Higgs mechanism

Higgs as pseudo-Goldstone boson of a global symmetry

Its mass is protected against radiative corrections

- Little Higgs mechanism: collective symmetry breaking
- Twin Higgs mechanism: discrete symmetry

Mirror symmetry

Type IA TH: Chacko, Goh, Harnik, hep-ph/0506256 Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/0510273 phenomenology: R. Barbieri, T. Gregoire and L. Hall, hep-ph/0509242

Left-right symmetry

Type II TH: Chacko, Goh, Harnik, hep-ph/0512088

Twin Higgs mechanism

Higgs as pseudo-Goldstone boson of a global symmetry

Its mass is protected against radiative corrections

- Little Higgs mechanism: collective symmetry breaking
- Twin Higgs mechanism: discrete symmetry

Mirror symmetry

Type IA TH: Chacko, Goh, Harnik, hep-ph/0506256 Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/0510273 phenomenology: R. Barbieri, T. Gregoire and L. Hall, hep-ph/0509242

Left-right symmetry

Type II TH: Chacko, Goh, Harnik, hep-ph/0512088

- $^{\bullet}$ Global U(4) , with subgroup SU(2) $_{L}\times$ SU(2) $_{R}\times$ U(1) $_{B\text{-L}}$ gauged
- Left-right symmetry: $g_L = g_R (y_L = y_R)$
- <u>A linear realization</u>

$$H = \left(\begin{array}{c} H_L \\ H_R \end{array}\right)$$

- $^{\bullet}$ Global U(4) , with subgroup SU(2) $_{L}\times$ SU(2) $_{R}\times$ U(1) $_{B\text{-L}}$ gauged
- Left-right symmetry: $g_L = g_R (y_L = y_R)$
- <u>A linear realization</u>

$$H = \left(\begin{array}{c} H_L \\ H_R \end{array}\right)$$

$$\langle H \rangle = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ f \end{array} \right)$$

- $^{\bullet}$ Global U(4) , with subgroup SU(2) $_{L}\times$ SU(2) $_{R}\times$ U(1) $_{B\text{-L}}$ gauged
- Left-right symmetry: $g_L = g_R (y_L = y_R)$

<u>A linear realization</u>

$$H = \left(\begin{array}{c} H_L \\ H_R \end{array}\right)$$

- $^{\bullet}$ Global U(4) , with subgroup SU(2) $_{L} \times$ SU(2) $_{R} \times$ U(1) $_{B-L}$ gauged
- Left-right symmetry: $g_L = g_R (y_L = y_R)$

- $^{\bullet}$ Global U(4) , with subgroup SU(2) $_{L} \times$ SU(2) $_{R} \times$ U(1) $_{B-L}$ gauged
- Left-right symmetry: $g_L = g_R (y_L = y_R)$

S. Su

Twin Higgs mechanism

Quadratic divergence forbidden by left-right symmetry $\Delta V = \frac{9}{64\pi^2} g_L^2 \Lambda^2 H_L^{\dagger} H_L + \frac{9}{64\pi^2} g_R^2 \Lambda^2 H_R^{\dagger} H_R$ $g_L = g_R = g$ $\Delta V = \frac{9}{64\pi^2} g^2 \Lambda^2 (H_L^{\dagger} H_L + H_R^{\dagger} H_R) = \frac{9}{64\pi^2} g^2 \Lambda^2 H^{\dagger} H$

 $m_{\rm H} \sim g^2 f / (4 \pi)$, natural for $f \sim TeV$

Fermion sector:

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} = [2, 1, 1/2], \quad L_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} = [2, 1, -1],$$
$$Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} = [1, 2, 1/3], \quad L_R = \begin{pmatrix} \nu_R \\ e_R \end{pmatrix} = [1, 2, -1],$$

Top quark mass:

$$T_L = [1, 1, 4/3], \quad T_R = [1, 1, 4/3],$$
$$y H_R^{\dagger} Q_R T_L + y H_L^{\dagger} Q_L T_R + M \bar{T}_L T_R + h.c.$$

Top quark mass eigenstates: SM top and t_H EW precision constraints on SU(2)_R gauge boson mass \Rightarrow f > 2 TeV Introduce another Higgs field that <u>only couples to gauge sector</u> which has a larger VEV

S. Su

• U(4) \times U(4), with gauged SU(2)_L \times SU(2)_R \times U(1)_{B-L} + LR symmetry

- Heavy gauge bosons: W_H, Z_H
- Heavy top: t_H
- Other SU(2)_R Higgses: φ[±]

 $\phi^{\mathbf{0}}$

 H_{20}

• Other SU(2)_L Higgs $H_{1^{\pm}}$

 $m^2_{WH,ZH} \sim g^2(f_1^2+f_2^2)$

 $m^2_{TH} \sim M^2 \text{+} y^2 f_1^{\ 2}$

 $m_{\phi^{\pm}}^2 \sim g^4/(16\pi^2) f_2^2 \log(\Lambda/gf_2)$

 $m_{\phi 0}^2 \sim B (f_2/f_1)$ B: small, (50-100 GeV)²

 $m^2_{H1^{\pm}}, \ H2^0 \sim \mu$

μ: soft symmetry breaking, O(f₁)

- Heavy gauge bosons: W_H, Z_H
- Heavy top: t_H
- Other SU(2)_R Higgses: φ[±]

φ**0**

 H_{20}

• Other SU(2)_L Higgs $H_{1^{\pm}}$

 $m^2_{WH,ZH} \sim g^2(f_1^2 + f_2^2)$

 $m^2_{TH} \sim M^2 \text{+} y^2 f_1^{\ 2}$

 $m_{\phi\pm}^2 \sim g^4/(16\pi^2)f_2^2 \log(\Lambda/gf_2)$

$$\mathbf{m^2}_{\phi 0} \sim \mathbf{B} \left(\mathbf{f_2} / \mathbf{f_1} \right) \quad B H_R^{\dagger} \hat{H}_R$$

B: small, (50-100 GeV)²

 $m^2_{H1^{\pm}}, \ _{H2}^0 \sim \mu$

μ: soft symmetry breaking, O(f₁)

- Heavy gauge bosons: W_H, Z_H
- Heavy top: t_H

 $\phi^{\mathbf{0}}$

 H_{20}

 Other SU(2)_L Higgs H₁≛ $m^2_{WH,ZH} \sim g^2(f_1^2 + f_2^2)$

 $m_{TH}^2 \sim M_{TH}^2 + y_{1}^2 f_1^2$

 $m_{\phi\pm}^2 \sim g^4/(16\pi^2)f_2^2 \log(\Lambda/gf_2)$

 $H_R^{\dagger} \hat{H}_R$

B: small, (50-100 GeV)²

 $m_{H1^{\pm}}^{2}, \mu^{0} \sim \mu$

μ: soft symmetry breaking, O(f₁)

$$\mu \hat{H}_L^{\dagger} \hat{H}_L$$

Model parameters

• Model parameters: f₁, (f₂, y), Λ , M, \sqrt{B} , μ

 $\begin{array}{l} \Lambda = 4\pi f_1 \ \text{or} \ 2\pi f_1 \\ \text{M=150 GeV} \\ \sqrt{\text{B=50 GeV}} \\ \mu = f_1/2 \end{array}$

Determine particle masses and interactions

Model parameters

• Model parameters: f₁, (f₂, y), Λ , M, \sqrt{B} , μ

fixed by Higgs VEV

 $\begin{array}{l} \Lambda = 4\pi f_1 \ \text{or} \ 2\pi f_1 \\ \text{M=150 GeV} \\ \sqrt{\text{B=50 GeV}} \\ \mu = f_1/2 \end{array}$

Determine particle masses and interactions

Model parameters

• Model parameters: f_1 , (f_2, y) , Λ , M, \sqrt{B} , μ

fixed by Higgs VEV fixed by top quark mass

 Λ = 4 π f₁ or 2 π f₁ M=150 GeV √B=50 GeV $\mu = f_1/2$

Determine particle masses and interactions

Experimental Constraints

- m_{WH}
 - $m_{vR} < m_e$, overproduction of ⁴He: $m_{WH} > 4$ TeV
 - m_{vR} < m_p, supernova cooling: m_{WH} > 23 TeV
 does not apply in LRTH, m_{vR} ~ f₂²/Λ
 - K_L-K_S mixing: $m_{WH} > 1.6 \text{ TeV} \rightarrow f_1 > 670 \text{ GeV}$ relaxed if CKM_L \neq CKM_R
 - direct search limit: m_{WH} > 800 GeV
- mzh
 - **–** Z ZH mixing: $f_1 > 500 600 \text{ GeV}$
 - precision measurements: m_{ZH} > 500 800 GeV
 - direct search limit: m_{ZH} > 630 GeV (CDF)

Heavy top t_H production

Heavy top t_H production

11

Heavy top t_H decay

Heavy top t_H decay

Heavy top t_{H} decay

S. Su

- Dominant background tt (one $W \rightarrow Iv$, one $W \rightarrow qq$), Wjj,Wbb
- Cuts
 - lepton (e or μ) with $p_T > 30$ GeV, $|\eta| < 2.5$
 - at least three jets with p_T > 50 GeV
 - one jet with p_T > 550 GeV

- Dominant background tt (one $W \rightarrow Iv$, one $W \rightarrow qq$), Wjj,Wbb
- Cuts
 - lepton (e or μ) with $p_T > 30$ GeV, $|\eta| < 2.5$
 - at least three jets with p_T > 50 GeV
 - one jet with p_T > 550 GeV
 - cos(θ_{bW})>0.95

- Dominant background tt (one $W \rightarrow Iv$, one $W \rightarrow qq$), Wjj,Wbb
- Cuts
 - lepton (e or μ) with $p_T > 30$ GeV, $|\eta| < 2.5$
 - at least three jets with p_T > 50 GeV
 - one jet with p_T > 550 GeV
 - cos(θ_{bW})>0.95

t_H → b φ[±]

- Dominant background tt (one $W \rightarrow Iv$, one $W \rightarrow qq$), Wjj,Wbb
- Cuts
 - lepton (e or μ) with $p_T > 30$ GeV, $|\eta| < 2.5$
 - at least three jets with p_T > 50 GeV
 - one jet with p_T > 550 GeV
 - cos(θ_{bW})>0.95

f=1000 GeV

Heavy gauge boson production

• Drell-Yan process $q \overline{q}' o W_H, Z_H$

Z_H decay

• Z_H

S. Su

15
Z_H decay

• Z_H

Z_H decay

 Z_{H} decay

W_u decay

• W_H (m_{vR} > m_{WH})

• $W_H (m_{vR} < m_{WH}), W_H \rightarrow I v_R, Br \sim 9\%$

W_H decay

• $W_H (m_{vR} > m_{WH})$ 10[°] u D. c S t_HB WH decay branching ratio 10⁻¹ $\phi^{0}\phi^{\pm}$ 10⁻²⊧ cD, uS t B 10^{-3|} сΒ $H_{SM}^{}\varphi^{\!\pm}$ 10⁻⁴∟ 1000 3000 M_{WH} (GeV) 2000 4000 5000

 $t_H \rightarrow b\phi^{\pm}: 4b + 1 \text{ lepton + missing } E_T$

 $t_H \rightarrow bW$: 2b + 1 lepton + missing E_T

 $t_H \rightarrow tZ$: 2b + 3 lepton + missing E_T

• $W_H (m_{vR} < m_{WH}), W_H \rightarrow I v_R, Br \sim 9\%$

φΟ

<u>Neutral Higgs ϕ^0 </u> Difficult to discover

- $\phi^0 \rightarrow$ bb, cc, $\tau\tau$, Γ suppressed by v²/f², Br similar to SM
- $\gamma\gamma$ generated by t_H loop, Γ suppressed by $v^2/f^2,~Br$ similar to SM
- No WW, ZZ coupling, $W\varphi^0,\,Z\varphi^0$ associated production suppressed
- gg $\rightarrow \varphi^0$ generated by $t_{\rm H}$ loop, suppressed by v^2/f^2
 - $gg {\rightarrow} \ \varphi^0 {\rightarrow} \ \gamma \gamma$ production suppressed
 - $gg {\rightarrow} \ \varphi^0 {\rightarrow} \ \text{bb} \ \text{QCD} \ \text{bg} \ \text{huge}$
- $bb\varphi^0$, $tb\varphi^0, tt\varphi^0$ cross section small

• Produced via the decay of heavy particles

¢0

• Produced via the decay of heavy particles

S. Su

ф⁰

• Produced via the decay of heavy particles

- no $W\phi^{\pm}$, $Z\phi^{\pm}$ associated production (no such coupling)
- $bb\phi^{\pm}$, $tb\phi^{\pm}$, $tt\phi^{\pm}$ cross section small

<u>Charged Higgs ϕ^{\pm} • Produced via the decay of heavy particles</u>

S. Su

21

-

<u>Charged Higgs ϕ^{\pm} </u> • Produced via the decay of heavy particles

S. Su

21

1

<u>Charged Higgs ϕ^{\pm} • Produced via the decay of heavy particles</u>

 H_1^{\pm}, H_2^{0}

<u>Higgs that couple to gauge boson only</u>: $H_1 \pm$, H_2^0

- $H_1 = H_2^0$, $H_1 = H_1^\pm$, $H_2^0 = H_2^0$, associated production (small)
- H₂⁰ stable : missing energy
- $H_1^{\pm} \rightarrow H_2^0$ + soft jets/leptons

if decay fast enough: appears as missing energy

if decay slow: track !

H₂⁰: good dark matter candidates

More later ...

M=0 case

$$\begin{array}{ll} \underline{\textbf{Top Yukawa:}} & yH_R^{\dagger}Q_RT_L + yH_L^{\dagger}Q_LT_R + h.c. \\ & \uparrow \\ \mathbf{f_1} & \mathbf{v} \end{array} \\ \hline \mathbf{t_H} = (\mathbf{T_L}, \mathbf{t_R}), \mathbf{m_{tH}} = \mathbf{yf_1} & \mathbf{t_{SM}} = (\mathbf{t_L}, \mathbf{T_R}), \mathbf{m_t} = \mathbf{yv} \end{array}$$

Gauge coupling

Yukawa coupling

 $\begin{array}{lll} \checkmark W - t - b & \checkmark Z - t - t \\ \textbf{x} W - t_H - b & \checkmark Z - t_H - t_H \\ \textbf{x} W_H - t - b & \textbf{x} Z - t_H - t \\ \checkmark W_H - t_H - b & \checkmark Z_H - t - t \\ \checkmark Z_H - t_H - t_H \\ \textbf{x} Z_H - t_H - t_H \end{array}$

$$\sqrt{\phi^{0} - t_{H} - t_{H}} \qquad \sqrt{H - t - t} \\ \times \phi^{0} - t - t \qquad \sqrt{H - t_{H} - t_{H}} \text{ (small)} \\ \times \phi^{0} - t_{H} - t \qquad \times H - t_{H} - t \\ \sqrt{\phi^{\pm} - t_{H}} - b \\ \times \phi^{\pm} - t - b$$

M=0 case

$$\begin{array}{ll} \textbf{Top Yukawa:} & yH_R^{\dagger}Q_RT_L + yH_L^{\dagger}Q_LT_R + h.c. \\ & \uparrow \\ \mathbf{f_1} & \mathbf{v} \end{array} \\ \textbf{t_H} = (\textbf{T_L}, \textbf{t_R}), \textbf{m_{tH}} = \textbf{yf_1} & \textbf{t_{SM}} = (\textbf{t_L}, \textbf{T_R}), \textbf{m_t} = \textbf{yv} \end{array}$$

Gauge coupling

Yukawa coupling

$$\begin{array}{ll} \checkmark W - t - b & \checkmark Z - t - t \\ \ast W - t_H - b & \checkmark Z - t_H - t_H \\ \ast W_H - t - b & \ast Z - t_H - t \\ \checkmark W_H - t_H - b & \checkmark Z_H - t - t \\ \checkmark Z_H - t_H - t_H \\ \ast Z_H - t_H - t_H \end{array}$$

4

M=0 case

$$\begin{array}{ll} \textbf{Top Yukawa:} & yH_R^{\dagger}Q_RT_L + yH_L^{\dagger}Q_LT_R + h.c. \\ & \uparrow \\ \mathbf{f_1} & \mathbf{v} \end{array} \\ \textbf{t_H} = (\textbf{T_L}, \textbf{t_R}), \textbf{m_{tH}} = \textbf{yf_1} & \textbf{t_{SM}} = (\textbf{t_L}, \textbf{T_R}), \textbf{m_t} = \textbf{yv} \end{array}$$

Gauge coupling

<u>Yukawa coupling</u>

$$\begin{array}{lll} \checkmark W - t - b & \checkmark Z - t - t \\ \ast W - t_H - b & \checkmark Z - t_H - t_H \\ \ast W_H - t - b & \ast Z - t_H - t \\ \checkmark W_H - t_H - b & \checkmark Z_H - t - t \\ \checkmark Z_H - t_H - t_H \\ \ast Z_H - t_H - t_H \end{array}$$

/

4

decay

 $\phi^{\pm} \rightarrow$ cs for M < 1 GeV

discovery becomes difficult due to QCD background

Heavy top t_H discovery

- single, pair production does not change much.
- decay: only $t_H \rightarrow b \phi^{\pm}$ (100%)

27

Heavy top t_H discovery

• single, pair production does not change much.

Heavy top t_H discovery

• single, pair production does not change much.

- Z_H, W_H drell-yan cross section does not change
- Z_H: Z_H → II does not change much ✓ Br(Z_H → t t_H) =0

• W_H: difficult

- Z_H, W_H drell-yan cross section does not change
- $Z_H: Z_H \rightarrow II \text{ does not change much } \checkmark$ Br $(Z_H \rightarrow t t_H) = 0$

• W_H: difficult

- Z_H, W_H drell-yan cross section does not change
- $Z_H: Z_H \rightarrow II \text{ does not change much } \checkmark$ Br($Z_H \rightarrow t t_H$) =0

• W_H: difficult

- Z_H , W_H drell-yan cross section does not change
- Z_H : $Z_H \rightarrow II$ does not change much \checkmark Br($Z_H \rightarrow t t_H$) =0
- W_H: difficult
- ^{10°} For M=0

discovery of almost all the particle are difficult

except for Z_H

Small coupling, ~ a few GeV about 10 times smaller than the natural size, $\sim \lambda v$

Small coupling, ~ a few GeV about 10 times smaller than the natural size, $\sim \lambda v$

Difficult!

Indirect Detection

$$\Phi_{\gamma} = \frac{N_{\gamma}\sigma v}{8\pi M_{DM}^2} \int_{\text{line of sight}} \rho^2(l) dl$$
$$J = \frac{1}{8.5 \text{ kpc}} \left(\frac{1}{0.3 \text{ GeV/cm}^3}\right)^2 \frac{1}{\Delta\Omega} \int d\Omega \int \rho^2 dl$$
$$\Phi_{\gamma} = N_{\gamma} \left(\frac{\sigma v}{1 \text{ pb}}\right) \left(\frac{100 \text{ GeV}}{M_{DM}}\right)^2 J\Delta\Omega \times (2.75 \times 10^{-10}) \text{ s}^{-1} \text{ cm}^{-2}$$

For ground based Atmospheric Cerenkov telescopes (ACTs), $\Delta\Omega = 10^{-3}$ sr J: 10³ for NFW profile, 10⁵ for Moore et. al. profile

Exps:

- space-based telescope GLAST: $E_{th} \sim 2 \text{ GeV}, \Phi \sim 10^{-10} \text{ sec}^{-1} \text{ cm}^{-2}$
- ACTs VERITAS and HESS: $E_{th} \sim 50$ GeV, $\Phi \sim (1-5) \times 10^{-12} \text{ sec}^{-1} \text{ cm}^{-2}$

Monochromatic Photon

Small coupling Can not be observed at future exp

Fragmentation Photon

Fragmentation Photon

Final State Radiation Photon

Final State Radiation Photon

Conclusions

- Left-right twin Higgs model: Higgs as pseudo-goldstone boson quadratic divergence forbidden by left-right symmetry
- New particles

Heavy gauge boson: W_H, Z_H, Heavy top quark t_H,

New Higgses: ϕ^0 , ϕ^{\pm} , H_1^{\pm} , H_2^0 (DM)

- M≠0: rich collider phenomenology
- M=0: difficult except for Z_H
- $\stackrel{\circ}{=}$ H₂⁰ (S or A) could be a good DM candidate
- 🏺 Future work
 - * Identify twin Higgs mechanism
 - * Comparison with other models, e.g., little higgs