Homework #10 for Physics 371

Due 4pm Friday, April 8

1) Using the 3x3 matrix representations of L_x and L_y for $\ell = 1$, show that the eigenvalues of L_x and L_y are $-\hbar$, 0, \hbar .

2) Using the matrix from problem 1, find the eigenvectors of L_x corresponding to $L_x = 0$ and $L_x = \hbar$. Calculate $\langle L_z \rangle$ and $\langle L_z^2 \rangle$ using these two L_x -eigenvectors.

3) Write down the 4x4 matrix representations of S_x , S_y , and S_z for S = 3/2. Using matrix algebra, verify that these matrices satisfy $\vec{S}^2 = S_x^2 + S_y^2 + S_z^2$.

4) Consider a particle of mass m in the ground state of a box in the form of a cube of volume $V = L^3$.

a) Determine the *pressure* the particle exerts on the walls of the box

$$P = -\frac{\partial E_0}{\partial V}.$$

b) Compare the ratio PV/E found in part (a) to that of an ideal gas.

5–7) Griffiths 4.25, 4.27, and 4.30.