Homework \#6 for Physics 371

Due 4pm Friday, March 4

1-6) Griffiths, $2.8,2.38,2.39,3.7,3.26,3.27$
7) For linear operators \hat{A}, \hat{B}, and \hat{C}, show that
a) $[\hat{A}, \hat{B}+\hat{C}]=[\hat{A}, \hat{B}]+[\hat{A}, \hat{C}]$,
b) $[\hat{A}, \hat{B} \hat{C}]=\hat{B}[\hat{A}, \hat{C}]+[\hat{A}, \hat{B}] \hat{C}$.
c) Show that $\left[f(x), \hat{p}_{x}\right]=i \hbar \frac{d f}{d x}$.
8) A particle moves in one dimension with Hamiltonian $\hat{H}=\hat{p}_{x}^{2} / 2 m+V(\hat{x})$. Show that the uncertainties Δp_{x} and ΔE obey the inequality

$$
\Delta p_{x} \Delta E \geq \frac{\hbar}{2}\left|\left\langle\frac{\partial V}{\partial x}\right\rangle\right| .
$$

What does this imply for stationary states?
9) Show that for a particle moving in one dimension,

$$
m \frac{d^{2}}{d t^{2}}\langle x\rangle=\left\langle-\frac{\partial V}{\partial x}\right\rangle
$$

Hint: Use the identity

$$
\frac{d}{d t}\langle Q\rangle=\left\langle\frac{\partial Q}{\partial t}\right\rangle+\frac{1}{i \hbar}\langle[\hat{Q}, \hat{H}]\rangle
$$

one or more times.

