Homework #8 for Physics 371

Due 4pm Friday March 25

1) Find the eigenvalues of the Hamiltonian

$$\hat{H} = E_0 \,\hat{a}^{\dagger} \hat{a} + E_1 (\hat{a}^{\dagger} + \hat{a})$$

where $[\hat{a}, \hat{a}^{\dagger}] = 1$. Hint: Define new operators $\hat{b} = \hat{a} + \beta$ and $\hat{b}^{\dagger} = \hat{a}^{\dagger} + \beta$, where β is a real number to be determined.

2) The operator \hat{c} is defined by the following relations:

$$\hat{c}^2 = 0,$$
$$\hat{c}\,\hat{c}^{\dagger} + \hat{c}^{\dagger}\hat{c} = 1,$$

where \hat{c}^{\dagger} is the hermitian conjugate of \hat{c} . Show that

(a) $\hat{N} = \hat{c}^{\dagger}\hat{c}$ is hermitian;

(b) $\hat{N}^2 = \hat{N};$

(c) The eigenvalues of \hat{N} are 0 and 1;

(d) If ψ_0 and ψ_1 denote the two eigenfunctions of \hat{N} corresponding to the eigenvalues 0 and 1, respectively, show that

$$\hat{c}^{\dagger}\psi_0 = \psi_1,$$
$$\hat{c}\,\psi_0 = 0,$$
$$\hat{c}^{\dagger}\psi_1 = 0.$$

3–5) Griffiths 2.12, 3.1, 3.6