## Practice Problems for Midterm 1

Actual exam will be shorter! Calculator and crib sheet ( 8.5 "x11", one side) allowed. Show work for full credit.

## 1) Fundamental quanta in solid-state physics

Two fundamental quanta were discovered in solid-state physics in the past 50 years. In cgs units, they are $h c / 2 e$ and $h / e^{2}$. Explain what these quanta are, and give derivations of their values and/or explain how they can be measured in the laboratory.

## 2) Fermi gas

Consider a system of $N$ fermions of mass $m$ moving freely in a box of volume $V$.
a) Derive the value of the Fermi wavevector $k_{F}$ and the Fermi energy $\varepsilon_{F}$.
b) Compute the total energy of the system in its ground state.
c) What is the probability $f(\varepsilon)$ that a quantum energy level $\varepsilon$ in the box will be occupied if the system is in thermal equilibrium at temperature $T$ and chemical potential $\mu$ ?

## 3) Boltzmann equation

The Boltzmann equation in the relaxation-time approximation is

$$
\partial f / \partial t+\mathbf{v} \cdot \partial f / \partial \mathbf{r}+\mathbf{F} \cdot \partial f / \partial \mathbf{p}=-\left(f-f_{0}\right) / \tau
$$

where $f_{0}$ is a local equilibrium distribution and you may assume $\tau=$ const.
Consider a bulk system of electrons subject to a constant electric field $\mathbf{E}$.
a) Which of the terms on the left-hand-side of the Boltzmann equation are zero in this case (and why)?
b) Solve for the nonequilibrium distribution $f_{1} \equiv f-f_{0}$ to leading order in $\mathbf{E}$.
c) Show that the electric conductivity tensor for free electrons $(\mathbf{v}=\mathbf{p} / m)$ is given by

$$
\sigma_{i j}=\frac{n e^{2} \tau}{m} \delta_{i j}
$$

Note: The electron density and electrical current density are given in terms of the
nonequilibrium distribution $f(\mathbf{r}, \mathbf{p}, t)$ by

$$
n(\mathbf{r}, t)=\int \frac{d^{3} p}{h^{3}} f(\mathbf{r}, \mathbf{p}, t), \quad \mathbf{j}(\mathbf{r}, t)=-e \int \frac{d^{3} p}{h^{3}} \mathbf{v} f_{1}(\mathbf{r}, \mathbf{p}, t),
$$

## 4) Wiedemann-Franz law for quantum conductors

Show that the Wiedemann-Franz law relating the thermal conductance $\kappa$ to the electrical conductance $G$,

$$
\frac{\kappa}{G T}=\frac{\pi^{2}}{3} \frac{k_{B}^{2}}{e^{2}}
$$

holds also for pure quantum systems, for which the Onsager linear-response coefficients are given by

$$
L^{(\nu)}=\frac{1}{h} \int d E\left(E-\mu_{0}\right)^{\nu} \mathcal{T}(E)\left(-\frac{\partial f_{0}}{\partial E}\right)
$$

where $\mathcal{T}(E)$ is the quantum mechanical transmission probability through the (twoterminal) device. For simplicity, you may take $L^{(1)}=0$.

Useful integral:

$$
\int_{-\infty}^{\infty} d x \frac{x^{2} e^{x}}{\left(e^{x}+1\right)^{2}}=\frac{\pi^{2}}{3} .
$$

