Exercises for Physics 472

Problem Set 3; Due 4pm Friday September 19
$\mathbf{1 - 2)}$ Griffiths 5.16, 5.17

3) Conductance of a perfect 2D wire

Using the results for the electrical conductance given in Lecture 4, determine the resistance in Ohms of a perfect two-dimensional wire in the form of a strip of width $D=4.7 \lambda_{F}$, where λ_{F} is the de Broglie wavelength of an electron at the Fermi energy. Assume the conduction electrons in the wire can be described by the free-particle Schrödinger equation with Dirichlet boundary conditions (i.e., $\Psi=0$) along the edges of the strip.

4) Sharvin formula

The Sharvin formula for the electrical conductance of an extremely short contact of area A between two pieces of metal is

$$
G \simeq \frac{2 e^{2}}{h} \frac{k_{F}^{2} A}{4 \pi}
$$

Derive the Sharvin formula by considering the total current flowing through a hole of area A in a thin insulating barrier separating two free electron gases with different Fermi energies. Use purely macroscopic arguments. Hint: In a free electron gas, the number of electrons with energy between E and $E+d E$ traveling at an angle between θ and $\theta+d \theta$ with respect to a given axis is

$$
\frac{\partial^{2} n}{\partial E \partial \theta} d E d \theta=\frac{D(E)}{2} \sin \theta d E d \theta
$$

where $D(E)$ is the density of states.

