Exercises for Physics 560

Problem Set 3; Due Friday, September 16

1) Linear ionic crystal

Consider a line of $2 N$ ions of alternating charge $\pm q$ with a repulsive potential energy A / R^{n} between nearest neighbors.
(a) Show that at the equilibrium separation

$$
U\left(R_{0}\right)=-\frac{2 N q^{2} \ln 2}{R_{0}}\left(1-\frac{1}{n}\right) .
$$

(b) Let the crystal be compressed so that $R_{0} \rightarrow R_{0}(1-\delta)$. Show that the work done in compressing a unit length of the crystal has the leading term $\frac{1}{2} C \delta^{2}$, where

$$
C=\frac{(n-1) q^{2} \ln 2}{R_{0}} .
$$

Note: We should not expect to obtain this result from the expression for $U\left(R_{0}\right)$, but must use the complete expression for $U(R)$.

2) Harmonic chain with next-nearest neighbor coupling

Consider a linear lattice of atoms of mass m and lattice spacing a, but introduce an elastic interaction between next-nearest neighbors such that $C(2)=\frac{1}{2} C(1)$. Calculate the frequency of longitudinal acoustic waves as a function of their wavevector. Sketch $\omega(k)$ in the first Brillouin zone.

3) Zero-point fluctuations in 1D

Consider a one-dimensional monatomic crystal with lattice spacing a. The Hamiltonian is

$$
H=\sum_{n=1}^{L}\left[\frac{p_{n}^{2}}{2 m}+\frac{C}{2}\left(x_{n}-x_{n-1}\right)^{2}\right] .
$$

a) Calculate the zero-point fluctuations of the nearest-neighbor bond length, $\langle 0|\left(x_{n}-x_{n-1}\right)^{2}|0\rangle$. Hint: the displacement operator for the nth atom may be expressed as

$$
x_{n}=L^{-1 / 2} \sum_{k} \sqrt{\frac{\hbar}{2 m \omega_{k}}}\left(a_{k} e^{i k n a}+a_{k}^{\dagger} e^{-i k n a}\right) .
$$

Also, in the limit $L \rightarrow \infty$ (which you may utilize) the sum over k may be replaced by an integral, $L^{-1} \sum_{k} \rightarrow(a / 2 \pi) \int d k$.
b) Calculate the mean squared deviation of the nth atom from its equilibrium position, $\langle 0| x_{n}^{2}|0\rangle$. (In evaluating the sum over normal modes, the mode with $k=0$ should be omitted. This corresponds to displacements of the center of mass, and we are only interested in the displacement of the atom relative to a frame in which the center of mass of the crystal is fixed.)

What does this result suggest about the possible existence of crystalline order in one dimension?

