Exercises for Physics 560A

Problem Set 4; Due Friday, October 1

1) Verify that the total number operator

$$
\hat{N}=\sum_{\nu} a_{\nu}^{\dagger} a_{\nu}
$$

for a system of bosons commutes with a product of creation and annihilation operators if and only if the number of a^{\dagger} 's equals the number of a 's in the product.
b) Repeat the derivation for fermions.

2) Two-body interaction

Verify that the expectation value of the 2-fermion interaction

$$
H^{(2)}=\frac{1}{2} \sum_{i j \ell m} V_{i j \ell m} c_{j}^{\dagger} c_{m}^{\dagger} c_{\ell} c_{i}
$$

in the state $|\mu \nu\rangle=c_{\mu}^{\dagger} c_{\nu}^{\dagger}|0\rangle$ is

$$
\langle\mu \nu| H^{(2)}|\mu \nu\rangle=V_{\mu \mu \nu \nu}-V_{\mu \nu \nu \mu} .
$$

Here use has been made of the symmetry $V_{i j \ell m}=V_{\ell m i j}$.

3) Two-dimensional electron gas

Consider a system of N non-interacting electrons in a two-dimensional box in the form of a square of side L, with area $A=L^{2}$. For simplicity, you may impose periodic boundary conditions.
a) Show that the density of states is independent of energy, and is given by

$$
D(E)=\frac{m A}{\pi \hbar^{2}}=\frac{N}{E_{F}}
$$

where E_{F} is the energy of the highest occupied state at $T=0$.
b) Show that the chemical potential is given by

$$
\mu=\beta^{-1} \ln \left(e^{\beta E_{F}}-1\right),
$$

where $\beta=1 / k_{B} T$.
c) Show that for temperatures $T \ll E_{F} / k_{B}$, the specific heat is

$$
C_{V} \simeq \frac{\pi^{2}}{3} N k_{B} \frac{k_{B} T}{E_{F}}
$$

