Exercises for Physics 560A

Problem Set 7; Due November 13

1) Conductance of a perfect 2 D wire

Using the results for the electrical conductance given in Lecture 5, determine the resistance in Ohms of a perfect two-dimensional wire in the form of a strip of width $D=3.75 \lambda_{F}$, where λ_{F} is the de Broglie wavelength of an electron at the Fermi energy. Assume the conduction electrons in the wire can be described by the free-particle Schrödinger equation with Dirichlet boundary conditions (i.e., $\Psi=0$) along the edges of the strip.

2) Sharvin formula

The Sharvin formula for the electrical conductance of an extremely short contact of area A between two pieces of metal is

$$
G \simeq \frac{2 e^{2}}{h} \frac{k_{F}^{2} A}{4 \pi}
$$

Derive the Sharvin formula by considering the total current flowing through a hole of area A in a thin insulating barrier separating two free electron gases with different Fermi energies. Use purely macroscopic arguments. Hint: In a free electron gas, the number of electrons with energy between E and $E+d E$ traveling at an angle between θ and $\theta+d \theta$ with respect to a given axis is

$$
\frac{\partial^{2} n}{\partial E \partial \theta} d E d \theta=\frac{D(E)}{2} \sin \theta d E d \theta
$$

where $D(E)$ is the density of states.

3) Solution of Schrödinger equation inside a cylinder

Verify that the wavefunction

$$
\psi_{k m n}(r, \phi, z)=e^{i k z+i m \phi} J_{m}\left(\gamma_{m n} r / R\right)
$$

is a solution of the free-particle Schrödinger equation in cylindrical coordinates, with energy eigenvalue

$$
E=\frac{\hbar^{2} \gamma_{m n}^{2}}{2 m R^{2}}+\frac{\hbar^{2} k^{2}}{2 m}
$$

This wavefunction vanishes on the surface of a cylinder of radius R if $\gamma_{m n}$ is the nth zero of J_{m}.

