Practice Problems for Physics 560A Midterm

Calculator and crib sheet (1-side 8.5"x11") allowed. Show work for full credit.

1) Reciprocal lattice

Consider a three-dimensional Bravais lattice $\mathbf{R}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$, where $n_{i} \in Z$ and $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} are noncoplanar vectors.
a) Any function with the periodicity of the Bravais lattice may be expressed as a Fourier sum over a set of reciprocal lattice vectors. State the condition(s) which must be satisfied by a reciprocal lattice vector.
b) Consider an orthorhombic Bravais lattice, with fundamental translation vectors $\mathbf{a}_{1}=a \hat{x}, \mathbf{a}_{2}=b \hat{y}$, and $\mathbf{a}_{3}=c \hat{z}$, with a, b, and c all different. What are the fundamental translation vectors of the reciprocal lattice?
c) What is the first Brillouin zone for the orthorhombic lattice in (b)?

2) Zero-point fluctuations of a harmonic chain

Consider a one-dimensional Bravais lattice of atoms with lattice spacing a. The Hamiltonian is

$$
H=\sum_{n=1}^{L}\left[\frac{p_{n}^{2}}{2 m}+\frac{C}{2}\left(x_{n}-x_{n-1}\right)^{2}\right] .
$$

Calculate the mean-squared deviation $\langle 0| x_{n}^{2}|0\rangle$ of the nth atom from its equilibrium position at zero temperature.

Hint: the displacement operator for the nth atom may be expressed as

$$
x_{n}=L^{-1 / 2} \sum_{k} \sqrt{\frac{\hbar}{2 m \omega_{k}}}\left(a_{k} e^{i k n a}+a_{k}^{\dagger} e^{-i k n a}\right),
$$

where $\omega_{k}=\sqrt{4 C / m}|\sin (k a / 2)|$. Also, in the limit $L \rightarrow \infty$ (which you may utilize) the sum over k may be replaced by an integral, $L^{-1} \sum_{k} \rightarrow(a / 2 \pi) \int d k$. (In evaluating the sum over normal modes, the mode with $k=0$ should be omitted. This corresponds to displacements of the center of mass, and we are only interested in the displacement of the atom relative to a frame in which the center of mass of the crystal is fixed.)

What does your result imply about the possible existence of crystalline order in one dimension?

3) Two-body interaction

Verify that the expectation value of the 2-fermion interaction

$$
H^{(2)}=\frac{1}{2} \sum_{i j \ell m} V_{i j \ell m} c_{j}^{\dagger} c_{m}^{\dagger} c_{\ell} c_{i}
$$

in the state $|\mu \nu\rangle=c_{\mu}^{\dagger} c_{\nu}^{\dagger}|0\rangle$ is

$$
\langle\mu \nu| H^{(2)}|\mu \nu\rangle=V_{\mu \mu \nu \nu}-V_{\mu \nu \nu \mu} .
$$

Here use has been made of the symmetry $V_{i j \ell m}=V_{\ell m i j}$.

