Physics 570A Homework 7

Due in class October 31

1) Aharonov-Bohm ring

Consider a one-dimensional system in the form of a ring of circumference L threaded by a magnetic flux Φ. The Schrödinger equation for a particle of charge q is

$$
E \psi(x)=\frac{1}{2 m}\left(\frac{\hbar}{i} \frac{d}{d x}-\frac{q}{c} A_{x}(x)\right)^{2} \psi(x), \quad \Phi=\int_{0}^{L} A_{x}(x) d x
$$

where x is a coordinate describing the arc length around the ring, and the wavefunction obeys the boundary condition $\psi(x+L)=\psi(x)$. Note: You may assume that $\mathbf{B}=0$ along the circumference of the ring.
a) Find the energy eigenvalues and eigenfunctions. Hint: exploit gauge invariance to make the problem easier.
b) Determine the electric current as a function of Φ for a single particle in the ground state.
2) Define the velocity operator \mathbf{v} via

$$
m \mathbf{v}=\mathbf{p}-q \mathbf{A} / c
$$

Show that the Cartesian components of the velocity operator have the commutation rules

$$
\begin{aligned}
& {\left[v_{x}, v_{y}\right]=i\left(e \hbar / m^{2} c\right) B_{z},} \\
& {\left[v_{y}, v_{z}\right]=i\left(e \hbar / m^{2} c\right) B_{x},} \\
& {\left[v_{z}, v_{x}\right]=i\left(e \hbar / m^{2} c\right) B_{y}}
\end{aligned}
$$

This means that a charged particle in a magnetic field cannot simultaneously have definite values of the velocity components in all three directions.

3) Lowest Landau level

Using the results of problem 2, and the generalized uncertainty principle

$$
\Delta A \Delta B \geq \frac{1}{2}|\langle[A, B]\rangle|,
$$

show that the kinetic energy of a particle moving in a constant magnetic field is bounded by $E \geq \hbar \Omega / 2$, where $\Omega=e B / m c$ is the cyclotron frequency.

