Exercises for Physics 570A

Problem Set 8; Due in class Thursday, November 14

1) Evaluate the Feynman path integral

$$
\left\langle x^{\prime}, t^{\prime} \mid x, t\right\rangle=\int_{x=x(t)}^{x^{\prime}=x\left(t^{\prime}\right)} \mathcal{D}[x(t)] e^{i \frac{S[x(t)]}{\hbar}}
$$

explicitly for a free particle using the expression given in lec. 16 for fixed N. Hint: Start with $N=1$, and use induction. See also the discussion in Sankar, Chapter 8.
2) Consider the Feynman path integral for a particle moving in one dimension with Hamiltonian $H=\frac{p^{2}}{2 m}+V(x)$.
a) Show that

$$
\frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime}, t^{\prime} \mid x, t\right\rangle=\int \mathcal{D}[x(t)] e^{i \frac{S[x(t)]}{\hbar}} \frac{i p_{x}\left(t^{\prime}\right)}{\hbar}
$$

b) Show that

$$
\frac{\partial}{\partial t^{\prime}}\left\langle x^{\prime}, t^{\prime} \mid x, t\right\rangle=\int \mathcal{D}[x(t)] e^{i \frac{S[x(t)]}{\hbar}} \frac{-i H\left(t^{\prime}\right)}{\hbar} .
$$

c) Using the results from parts (a) and (b), show that the propagator satisfies Schrödinger's equation.

