Exercises for Physics 570A

Problem Set 9; Due in class Tuesday, November 26

1) A particle is known to be in an eigenstate of \vec{L}^{2} and L_{z} with eigenvalues $\hbar^{2} \ell(\ell+1)$ and $m \hbar$, respectively. Prove the following expectation values:

$$
\begin{gathered}
\left\langle L_{x}\right\rangle=\left\langle L_{y}\right\rangle=0 \\
\left\langle L_{x}^{2}\right\rangle=\left\langle L_{y}^{2}\right\rangle=\frac{\hbar^{2}}{2}\left[\ell(\ell+1)-m^{2}\right] .
\end{gathered}
$$

2) Show that the orbital angular momentum operator \vec{L} commutes with both the operators \vec{r}^{2} and \vec{p}^{2}.
3) Suppose half-odd integer values, say $\ell=1 / 2$, were allowed for orbital angular momentum. From

$$
L_{+} Y_{1 / 2,1 / 2}(\theta, \phi)=0
$$

we may deduce

$$
Y_{1 / 2,1 / 2}(\theta, \phi) \propto e^{i \phi / 2} \sqrt{\sin \theta}
$$

Now try to construct $Y_{1 / 2,-1 / 2}(\theta, \phi)$ by (a) applying L_{-}to $Y_{1 / 2,1 / 2}(\theta, \phi)$; and (b) using $L_{-} Y_{1 / 2,-1 / 2}(\theta, \phi)=0$. Show that the two procedures lead to contradictory results, refuting the notion of half-odd integer orbital quantum numbers.
4) (a) Construct the matrix representation of $\hat{S}_{r}=\vec{S} \cdot \hat{r}$, representing the component of spin angular momentum along an arbitrary direction

$$
\hat{r}=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z}
$$

(b) Find the eigenvalues and (normalized) eigenvectors of \hat{S}_{r}.
5) Find the linear combination $|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle$ that maximizes the uncertainty product

$$
\left\langle\left(\Delta S_{x}\right)^{2}\right\rangle\left\langle\left(\Delta S_{y}\right)^{2}\right\rangle
$$

Verify that for the linear combination you found, the uncertaintly relation for S_{x} and S_{y} is satisfied.
6) A beam of spin- $1 / 2$ atoms goes through a series of Stern-Gerlach-type measurements as follows:
(a) The first measurement accepts $S_{z}=+\hbar / 2$ atoms and rejects $S_{z}=-\hbar / 2$ atoms.
(b) The second measurement accepts accepts $S_{r}=+\hbar / 2$ atoms and rejects $S_{r}=-\hbar / 2$ atoms, where S_{r} is defined in problem 4.
(c) The third measurement accepts $S_{z}=-\hbar / 2$ atoms and rejects $S_{z}=+\hbar / 2$ atoms.
What is the intensity of the final $S_{z}=-\hbar / 2$ beam if the $S_{z}=+\hbar / 2$ beam after the first measurement is normalized to unity? How must we orient the second measuring apparatus if we are to maximize the intensity of the final $S_{z}=-\hbar / 2$ beam?

7) Zeemann precession

Consider a spin- $1 / 2$ particle with magnetic moment operator $\vec{\mu}=\mu_{B} \vec{\sigma}$, where $\mu_{B}=e \hbar / 2 m$ is the Bohr magneton and $\vec{\sigma}$ is a vector of Pauli matrices. The particle is placed in a constant magnetic field $\vec{B}=B \hat{z}$, with Hamiltonian $\hat{H}=-\vec{\mu} \cdot \vec{B}$.
(a) Write the Heisenberg equations of motion for the operators $\hat{S}_{x}(t), \hat{S}_{y}(t)$, and $\hat{S}_{z}(t)$.
(b) Solve them to obtain $\vec{S}(t)$.

