# Physics 570A Final Exam Practice Problems $8.5 " \times 11$ " crib sheet (two sides) and scientific calculator allowed. 

## 1) Aharonov-Bohm effect

Consider a two-slit experiment with electrons, where a magnetic flux $\Phi$ is encapsulated in the impenetrable barrier between the two narrow slits, whose separation is $d$. Assume a monochromatic source of electron waves of energy $E=\hbar^{2} k^{2} / 2 m$ illuminating the slits.

The intensity pattern is observed on a screen parallel to the plane of the two slits, a large distance $L \gg d$ away from the slits. At what angles are bright fringes observed? At what angles are dark fringes observed? How do these angles depend on $\Phi$ ?

## 2) 1D Scattering

a) Calculate the transmission probability for a particle of energy $E=V_{0} / 99$ incident from the left on the negative potential step

$$
V(x)=-V_{0} \theta(x), \quad \text { where } \quad \theta(x)= \begin{cases}0 & x<0 \\ 1 & x \geq 0\end{cases}
$$

and $V_{0}>0$. Note: You must derive your result by solving Schrödinger's equation.
b) Now suppose the potential step is inverted $V_{0} \rightarrow-V_{0}$. Determine the transmission probability. Again, you must justify your result with a detailed calculation.

## 3) Sequential measurements

An operator $\hat{A}$, representing observable $a$, has two normalized eigenstates $\psi_{1}$ and $\psi_{2}$, with eigenvalues $a_{1}$ and $a_{2}$, respectively. Operator $\hat{B}$, representing observable $b$, has two normalized eigenstates $\phi_{1}$ and $\phi_{2}$, with eigenvalues $b_{1}$ and $b_{2}$. The eigenstates are related by

$$
\psi_{1}=\sqrt{\frac{1}{2}}\left(\phi_{1}+\phi_{2}\right), \quad \psi_{2}=\sqrt{\frac{1}{2}}\left(\phi_{1}-\phi_{2}\right)
$$

a) Observable $a$ is measured, and the value $a_{1}$ is obtained. What is the state of the system (immediately) after the measurement?
b) If $b$ is now measured, what are the possible results, and with what probabilities do they occur?
c) Right after the measurement of $b, a$ is measured again. What is the probability of getting $a_{1}$ again?

## 4) Coherent states

Consider a simple harmonic oscillator:

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{m \omega^{2} \hat{x}^{2}}{2} .
$$

a) Construct a normalized state vector $|\lambda\rangle$ which is an eigenfunction of the annihilation operator,

$$
\hat{a}|\lambda\rangle=\lambda|\lambda\rangle,
$$

where

$$
\hat{a}=\sqrt{\frac{m \omega}{2 \hbar}} \hat{x}-\frac{i \hat{p}}{\sqrt{2 m \hbar \omega}}
$$

Such a state is known as a coherent state.
b) Is there a corresponding ket that is an eigenstate of the creation operator $\hat{a}^{\dagger}$ ? If so, construct it; if not, prove that it doesn't exist.
5) Spin-1/2: Measurement of $S_{z}$ or $S_{y}$

Consider a spin- $1 / 2$ particle in the general spin state

$$
\psi=\binom{a}{b} \equiv a \psi_{\uparrow}+b \psi_{\downarrow},
$$

where $a$ and $b$ are complex numbers, and $\psi_{\uparrow}$ and $\psi_{\downarrow}$ are eigenstates of $S_{z}$.
a) If a measurement of the $z$-component of the particle's spin, $S_{z}$, is performed, what are the possible outcomes, and with what probabilities do they occur? What is the expectation value $\left\langle S_{z}\right\rangle$ ?
b) If, instead, a measurement of the $y$-component of the particle's spin, $S_{y}$, is performed, what are the possible outcomes, and with what probabilities do they occur? What is the expectation value $\left\langle S_{y}\right\rangle$ ?

## 6) Addition of angular momenta: $1+1 / 2$

Consider the total angular momentum $\vec{J}=\vec{L}+\vec{S}$ of a spin- $1 / 2$ particle with wavefunction

$$
|\Psi\rangle=\left|\ell=1, m_{\ell}=1\right\rangle|\downarrow\rangle .
$$

a) If the $z$-component $J_{z}$ of the total angular momentum is measured, what are the possible outcomes, and with what probabilities do they occur?
b) If the total angular momentum squared $\vec{J}^{2}$ is measured, what are the possible outcomes, and with what probabilities do they occur?

## 7) Spin interferometer

Two electrons are prepared with initial wavefunction

$$
\left|\Psi_{i}\right\rangle=\left|S=1, m_{s}=0\right\rangle=\sqrt{1 / 2}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)
$$

The electrons are then separated and passed through an interferometer such that electron 1 acquires a phase $e^{i \theta}$ if it has spin-up and $e^{-i \theta}$ if it has spin-down, while the phase of electron 2 is unchanged. The total wavefunction of the system after the electrons have traversed the interferometer is

$$
\left|\Psi_{f}\right\rangle=\sqrt{1 / 2}\left(e^{i \theta}|\uparrow \downarrow\rangle+e^{-i \theta}|\downarrow \uparrow\rangle\right) .
$$

If the total angular momentum (squared) of the system $\vec{S}^{2}$ is then measured, what are the possible outcomes? With what probabilities do they occur?

