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Quantum theory of metallic nanocohesion
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Abstract

The conducting and mechanical properties of ultrasmall metallic structures are calculated using the electronic
scattering matrix, evaluated in the free electron approximation. Force oscillations of the order ¢y, 4r are predicted when
a metallic quantum wire is stretched to the breaking point, which are synchronized with quantized jumps in the conduc-
tance. Coherent backscattering from impurities is shown to lead to fine structure (a “‘quantum fingerprint”) in the force

oscillations. © 1997 Elsevier Science B.V. All rights reserved.
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In a pioneering experiment, Rubio, Agrait, and
Vieira recently measured simuitaneously the force
and conductance during the formation and rupture of
an atomic-scale Au contact [1]. They observed oscil-
lations in the tensile force of the order | nN under de-
formation, which were synchronized with quantized
jumps in the conductance. In a previous paper [2], we
showed that this intriguing behavior can be under-
stood quantitatively using a simple jellium model for
the conductance and cohesion of a ballistic metallic
system, accounting explicitly for quantum-size effects
via the electronic scattering matrix. Here, we extend
the formalism of Ref. [2] to include the effects of
multiple backscattering, which will occur due to the
presence of impurities or irregularities in the shape of
the contact. We find that multiple backscattering leads
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to fine structure in the force oscillations, a mechanical
analogue of the so-called universal conductance fluc-
tuations (UCF) [3].

The success of the jellium approximation in explain-
ing the energetics of ultrasmall metal clusters [4, 5]
motivates its application to mesoscopic (open) metal-
lic systems, which are the subject of interest here. We
investigate the conducting and mechanical properties
of a nanoscopic constriction connecting two macro-
scopic metallic reservoirs. This is a quantum mechan-
ical scattering problem. The formulation of electrical
transport in terms of the scattering matrix was devel-
oped by Landauer [6, 7] and Biittiker [8], while the
formulation of the free energy of open systems in
terms of the scattering matrix was first developed by
Dashen et al. [9], and was recently revived in the con-
text of the persistent current problem by Akkermans et
al. [10]. Neglecting electron—¢lectron interactions, the
electrical conductance of the system may be expressed
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Fig. 1. Electrical conductance G and tensile force F of a metallic
nanoconstriction versus the elongation AL/Ly. Impuritics with
backscattering probabilities %, = 0.06 and 2% = 0.03 were placed
at opposite ends of the constriction, and the initial length and radius
of the constriction were kpLy = 40 and &pR = S, respectively. The
dashed line indicates the results without impurity scattering. [nset:
Effective circuit for the system.

as [6]
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and the grand canonical potential of the system may
be written [2]
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where  f(E) = {exp[f(E — )] + 1} is the
Fermi distribution function, and 7,(F) and ©.(F)
are, respectively, the transmission probability and
scattering phase shift in scattering channel v. Egs. (1)
and (2) allow one to treat the conducting and me-
chanical properties of a confined electron gas on an
equal footing, and provide the starting point for our
calculation.

To be specific, let us consider an axially symm-
etric adiabatic constriction of length L in an infinitely
long quantum wire, with electrons confined along
the z-axis by a hard-wall potential at » = r(z). The
transverse motion is quantized, with mode energies
e(z) = h?y2/2mr(z)?, where {y.} are the zeros of
the Bessel functions. As the constriction is elongated,
r(z) decreases to preserve the volume of the system
(ideal plastic deformation). Backscattering is intro-
duced by two scattering centers, to the right and left
of the constriction (see inset of Fig. 1), with scattering
matrices
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where 2; is the backscattering probability from im-
purity j (intermode impurity scattering is neglected).
The scattering matrix for the combined system may
be obtained straightforwardly, and Eq. (1) yields, in
the mit 7 = 0,
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is the phase shift in the absence of impurity scattering.
The total scattering phase shift in channel v is found
to be
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The tensile force under elongation is given by F =
—cQ/el, where Q is calculated from Egs. (2), (5),
and (6).
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Fig. 1 shows the conductance and force of a metallic
nanoconstriction with impurity scattering as a func-
tion of the elongation, calculated from Eqgs. (2)-(6).
The results without impurity scattering are shown for
comparison as a dashed line. The correlations between
the force and the conductance are striking: |F| in-
creases along the conductance plateaus, and decreases
sharply when the conductance drops. This behavior
reflects the fact that cohesion, like conduction, is
mediated by the quantized transverse modes in the
constriction [2]. One sees that the conductance is sup-
pressed below integer values due to backscattering,
while the gross features of the force fluctuations are
not shifted. Both the conductance and force exhibit
fine structure, a “quantum fingerprint™ of the micro-
scopic disorder. Fig. 1 is remarkably similar to the
experimental results of Ref. [1], both qualitatively and
quantitatively. Inserting the value &7/, = 1.7nN for
Au, we see that the calculated force is in quantitative
agreement with the last two force oscillations shown
in Fig. 1 of Ret. [1]. Fine structure in the tensile force
similar to that shown here was also observed in Ref.
[1], raising the intriguing possibility that the mechani-
cal analogue of UCF may already have been observed.
Further experimental work will be necessary to show
that this fine structure is reproducible, and may thus
constitute a quantum fingerprint of the disorder. Per-
haps the most promising possibility is to measure the
Aharanov—Bohm effect for two metallic point contacts

in parallel, which can be shown to lead to a similar,
flux-periodic, fine structure in the force oscillations,
with an amplitude up to &p//f.

In conclusion, we have investigated quantum in-
terference effects on the mechanical properties of
metallic nanostructures using the electronic scatter-
ing matrix, calculated in the noninteracting jellium
approximation. This model is able to explain quan-
titatively recent experiments on the conducting and
mechanical properties of ultrasmall metallic contacts
[1], and should be applicable to a wide variety of prob-
lems in the rapidly evolving field of nanomechanics.
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