Top Quark Physics

Erich W. Varnes
University of Arizona

International Conference on High-Energy Physics
August 3, 2008
The Top Quark in the SM and Beyond

- All top quark properties (except its mass) are fixed in the SM
 - It’s just another isospin $+\frac{1}{2}$ quark
- In addition, we also know that $|V_{tb}| \approx 1$
 - So the top has one dominant decay mode: $t \rightarrow Wb$
- Most of the interest in top quark physics comes from the potential to find non-standard effects
- Is Yukawa coupling a hint?

Top is the only fermion with a “natural” coupling
What We Can Learn From the Top Quark

• Questions

• Measurements in this talk
What We Can Learn From the Top Quark

• Questions
 - What is the Higgs boson mass?
 - Do we understand heavy flavor production in QCD?
 - Are there more than three fermion generations?
 - Are there new massive particles?
 - Are there charged Higgs bosons?
 - Do all quarks have the expected couplings?

• Measurements in this talk
What We Can Learn From the Top Quark

- **Questions**
 - What is the Higgs boson mass?
 - Do we understand heavy flavor production in QCD?
 - Are there more than three fermion generations?
 - Are there new massive particles?
 - Are there charged Higgs bosons?
 - Do all quarks have the expected couplings?

- **Measurements in this talk**
 - Single top cross section
 - Searches for H^+ and $W'\rightarrow tb, t\rightarrow H^+b$
 - Search for FCNC
 - Top quark pair cross section
 - Top quark mass
 - Top quark charge
 - Forward-backward charge asymmetry
 - M_{tt} distribution
 - W boson helicity
 - Top quark branching fractions
 - Search for t' quark
What We Can Learn From the Top Quark

- **Questions**
 - What is the Higgs boson mass?
 - Do we understand heavy flavor production in QCD?
 - Are there more than three fermion generations?
 - Are there new massive particles?
 - Are there charged Higgs bosons?
 - Do all quarks have the expected couplings?

- **Measurements in this talk**
 - Single top cross section
 - Searches for H^+ and $W'\rightarrow tb$, $t\rightarrow H^+b$
 - Search for FCNC
 - Top quark pair cross section
 - Top quark mass
 - Top quark charge
 - Forward-backward charge asymmetry
 - M_{tt} distribution
 - W boson helicity
 - Top quark branching fractions
 - Search for t' quark
What We Can Learn From the Top Quark

• Questions

What is the Higgs boson mass?

Do we understand heavy flavor production in QCD?

Are there more than three fermion generations?

Are there new massive particles?

Are there charged Higgs bosons?

Do all quarks have the expected couplings?

• Measurements in this talk

Single top cross section

Searches for H^+ and $W' \rightarrow tb$, $t \rightarrow H^+b$

Search for FCNC

Top quark pair cross section

Top quark mass

Top quark charge

Forward-backward charge asymmetry

M_{tt} distribution

W boson helicity

Top quark branching fractions

Search for t' quark
What We Can Learn From the Top Quark

• Questions

 What is the Higgs boson mass?
 Do we understand heavy flavor production in QCD?
 Are there more than three fermion generations?
 Are there new massive particles?
 Are there charged Higgs bosons?
 Do all quarks have the expected couplings?

• Measurements in this talk

 Single top cross section
 Searches for H^+ and $W'\rightarrow tb$, $t\rightarrow H^+b$
 Search for FCNC
 Top quark pair cross section
 Top quark mass
 Top quark charge
 Forward-backward charge asymmetry
 M_{tt} distribution
 W boson helicity
 Top quark branching fractions
 Search for t' quark
What We Can Learn From the Top Quark

- **Questions**
 - What is the Higgs boson mass?
 - Do we understand heavy flavor production in QCD?
 - Are there more than three fermion generations?
 - Are there new massive particles?
 - Are there charged Higgs bosons?
 - Do all quarks have the expected couplings?

- **Measurements in this talk**
 - Single top cross section
 - Searches for H^+ and $W' \rightarrow tb$, $t \rightarrow H^+b$
 - Search for FCNC
 - Top quark pair cross section
 - Top quark mass
 - Top quark charge
 - Forward-backward charge asymmetry
 - M_{tt} distribution
 - W boson helicity
 - Top quark branching fractions
 - Search for t' quark
What We Can Learn From the Top Quark

Questions

- What is the Higgs boson mass?
- Do we understand heavy flavor production in QCD?
- Are there more than three fermion generations?
- Are there new massive particles?
- Are there charged Higgs bosons?
- Do all quarks have the expected couplings?

Measurements in this talk

- Single top cross section
- Searches for H^+ and $W' \rightarrow tb$, $t \rightarrow H^+ b$
- Search for FCNC
- Top quark pair cross section
- Top quark mass
- Top quark charge
- Forward-backward charge asymmetry
- M_{tt} distribution
- W boson helicity
- Top quark branching fractions
- Search for t' quark
What We Can Learn From the Top Quark

• Questions
 - What is the Higgs boson mass?
 - Do we understand heavy flavor production in QCD?
 - Are there more than three fermion generations?
 - Are there new massive particles?
 - Are there charged Higgs bosons?
 - Do all quarks have the expected couplings?

• Measurements in this talk
 - Single top cross section
 - Searches for H^+ and $W' \rightarrow tb$, $t \rightarrow H^+b$
 - Search for FCNC
 - Top quark pair cross section
 - Top quark mass
 - Top quark charge
 - Forward-backward charge asymmetry
 - M_{tt} distribution
 - W boson helicity
 - Top quark branching fractions
 - Search for t' quark
Top Quark Signatures

- Single top quark:
 - Dominant backgrounds arise from vector boson + jet production
 - Good b jet and lepton ID, missing E_T resolution help in finding top quarks

- Top quark pair:

Top Quarks, One at a Time

- Production at the Tevatron:
 - Direct access to the tWb coupling
 - overall rate and ratio between s- and t-channels are sensitive to new physics
 - Experimental challenge:
 - cross section $\sim x2$ lower than $t\bar{t}$
 - large backgrounds from $W + 2\text{jet}$ $\sigma_{Wjj} \approx 19,000 \text{ pb}$
 - Need multivariate selection techniques to extract signal

- s-channel
 - 0.88 pb

- t-channel
 - 1.98 pb
Multivariate Methods

Goal: Given a set of measurements \mathbf{x}, find

$$p(S|\mathbf{x}) = \frac{p(S)p(\mathbf{x}|S)}{p(S)p(\mathbf{x}|S) + p(B)p(\mathbf{x}|B)}$$

Neural network

- **Input**
- **Output**
- Train on MC samples to optimize weights

Decision tree

- Training determines “shape” of tree
- Iterative “boosting” improves performance

Matrix element

- Calculate $p(S|\mathbf{x})$ from signal and bkg differential cross sections
- Integrate over detector resolution

Output

- $p(\mathbf{x}|S)$
- $p(\mathbf{x}|B)$

Input

- \mathbf{x}
Single Top Cross Section

- Both CDF and DØ use several multivariate discriminants to find single top candidates. Examples:

DØ

- DØ: $\sigma = 4.7 \pm 1.3\, \text{pb}$
 - 3.6σ significance
 - $|V_{tb}| > 0.68\,\text{ at } 95\%\,\text{C.L.}$

CDF

- CDF: $\sigma = 2.2 \pm 0.7\, \text{pb}$
 - 3.7σ significance
 - $|V_{tb}| > 0.66\,\text{ at } 95\%\,\text{C.L.}$
Constraints on Wtb Couplings

- Rate and kinematic distributions in single top events depend on the Wtb coupling structure
 - can search for right-handed and/or tensor couplings

$$\mathcal{L} = \frac{g}{\sqrt{2}} W^-_\mu \bar{b}_\gamma^{\mu} \left(f^L_1 P_L + f^R_1 P_R \right) t$$

$$- \frac{g}{\sqrt{2} M_W} \partial^\nu W^-_\mu \bar{b}_\sigma^{\mu\nu} \left(f^L_2 P_L + f^R_2 P_R \right) t + h.c.$$
Search for W'

- $W' \rightarrow tb$ leads to the same final state as s-channel single top production
 - use single top selection to search for W'
 - signals are enhanced rate and resonance in M_{Wjj}

$m_{W'} > 731$ GeV @ 95% C.L

$m_{W'} > 800$ GeV @ 95% C.L
Flavor-Changing Neutral Currents

- FCNC would increase single-top cross section

CDF:

\[\kappa_{gtu} / \Lambda < 0.025 \text{ TeV}^{-1} \]

\[\kappa_{gtc} / \Lambda < 0.105 \text{ TeV}^{-1} \]

@ 95% C.L.

H1:

Anomalous coupling \(\kappa_{tu\gamma} \)

\[\sigma(ep \rightarrow etX) < 0.16 \text{ pb} \]

@ 95% C.L.
Top Quarks, Two at a Time

- Production at the Tevatron:
- Total cross section: \(\sim 7 \text{ pb} \)

- Top discovery, most properties measurements use \(tt \) events
- CDF has recently measured the \(qq \) and \(gg \) contributions:

 - Based on \(\Delta \phi \) between the leptons in dilepton events:

 \[
 F_{gg} = 0.53^{+0.35+0.07}_{-0.37-0.08}
 \]
Production Cross Section

• The tt cross section has been measured in many final states using kinematic and b tag information independently.

\[\sigma(pp \rightarrow tt) = 6.xx \pm yy \pm zz \text{ pb} \]
Mass Measurement from Cross Sections

- Assuming that production is governed by SM, can compare measured to calculated cross sections to extract top mass

 means that mass is measured in a well-defined renormalization scheme

NLL+NLL cross section:
\[m_t = 167.8 \pm 5.7 \text{ GeV} \]

Approx NNLO cross section:
\[m_t = 169.6 \pm 5.4 \text{ GeV} \]
Top Quark Mass ($\ell + \text{jets}$)

- Goal: measure top mass precisely...
 - to constrain Higgs mass
- ...in as many channels as possible
 - to search for new physics

- Matrix element method provides best sensitivity
- discriminate between top mass hypotheses as well as between signal and background
- calibrate jet energy measurement from $W \rightarrow jj$ in signal events

$\ell + \text{jets}$ modes have optimal combination of rate and background
Top Quark Mass (ℓ +jets)

- Results:
- **DØ:**

 $m_t = 172.1 \pm 1.1 \pm 1.6$ GeV

- **CDF:**

 $m_t = 172.2 \pm 1.0 \pm 1.3$ GeV
Top Quark Mass with Minimal Systematics

- Use observables that vary with top mass but have no first-order dependence on jet response
 - lepton p_T
 - b decay length in xy plane

$m_t = 175.3 \pm 6.2 \pm 3.0$ GeV

Dominant systematics will scale with sample size

Currently statistics-limited, but will be an important technique at the LHC
Top Quark Mass (Dilepton)

- Matrix element method can also be applied to dilepton events

- CDF: Matrix Element,NN event selection

- DØ: Matrix Element, $e\mu$ channel

$\begin{align*}
m_t &= 171.2 \pm 2.7 \pm 2.9 \text{ GeV} \\
m_t &= 174.4 \pm 3.2 \pm 2.1 \text{ GeV}
\end{align*}$
Top Quark Mass (all jets)

- Advantages of the all-hadronic channel:
 - largest tt branching fraction
 - fully measured final state
- Disadvantage:
 - huge background from multijet production
- b identification and neural network trained on kinematic differences are used in event selection

$\text{CDF Run II Preliminary (1.9 fb^{-1})}$

$\chi^2 / \text{N dof} = 21.4 / 27$

$\text{Prob} = 0.785$

$m_t = xxx \pm yyy \pm zzz \text{ GeV}$
World Average Top Quark Mass

\[m_t = 172.4 \pm 0.7 \pm 1.0 \text{ GeV} \]
0.7 % precision

\[m_H < xxX \text{ GeV} @ 95\% \text{ C.L.} \]
Top Quark Charge

- Have we really observed the top quark, or some new particle with charge 4/3?
- Test by kinematic reconstruction, then measurement of charge of jet paired with the lepton

CDF Run II preliminary, L=1.5 fb⁻¹

CDF

- SM like
- XM like

SM strongly favored

\[p\text{-value for } +4/3: \, 0.2\% \]

DØ, 370 pb⁻¹

- Data
- \(|q| = 2e/3\)
- \(|q| = 4e/3\)

SM favored

\[p\text{-value for } +4/3: \, 7.8\% \]
Forward-backward Charge Asymmetry

- In SM, small asymmetry in $y_t - y_{\bar{t}}$ (5-10%) arises from NLO effects
 - new physics might enhance the asymmetry

CDF

\[A_{FB}^{\text{corrected}} = 0.17 \pm 0.07_{\text{stat}} \pm 0.04_{\text{sys}} \]

\[A_{FB} = 17 \pm 7 \pm 4 \% \]

DØ

\[A_{FB} = 12 \pm 8 \pm 1 \% \]
The M_{tt} Distribution

- Non-SM distribution for tt invariant mass could indicate
 - presence of an $X \rightarrow tt\bar{t}$ resonance
 - interference from non-SM process

$m_{Z'} < 760$ GeV @ 95% C.L.
W Boson Helicity

- In the SM, 70% of W’s from top decay have helicity 0, 30% have helicity -1
- Direct measurements might reveal non-standard couplings

Measurement is based on direct reconstruction of \(\cos \theta^* \)

Detector and acceptance effects accounted for by:
- fit to MC templates or
- bin-by-bin unfolding
W Boson Helicity

- DØ, template method
 - $\ell + \text{jets}$ and $\ell\ell$ channels
 - use both W's in each event

$$f_0 = 0.49 \pm 0.10 \pm 0.08$$
$$f_+ = 0.11 \pm 0.05 \pm 0.05$$
SM p-value: 23%

- CDF ($\ell + \text{jets}$ channel)

Combination:
$$f_0 = 0.66 \pm 0.16$$
$$f_+ = -0.03 \pm 0.07$$
Top Quark Branching Fractions

- Use top quark event yields with 0, 1, and 2 b-tagged jets to measure production cross section and $R \equiv \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)}$

$$R = 0.97^{+0.09}_{-0.08}$$

$$\sigma_{\bar{t}t} = 8.18^{+0.90}_{-0.84} \pm 0.50 \text{ (lumi) pb}$$
Search for Invisible Decays

- Measure absolute rate (rather than fraction) of events with 2 b-tagged jets to determine $B(t \rightarrow X)$
 - sensitive to invisible top decays

<table>
<thead>
<tr>
<th>Sample</th>
<th>2 Jets</th>
<th>3 Jets</th>
<th>4 Jets</th>
<th>≥ 5 Jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>0.5±0.1</td>
<td>0.5±0.1</td>
<td>0.2±0.0</td>
<td>0.1±0.0</td>
</tr>
<tr>
<td>WZ</td>
<td>2.6±0.3</td>
<td>0.8±0.1</td>
<td>0.2±0.0</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.1±0.0</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>Single Top (s)</td>
<td>8.4±1.2</td>
<td>2.8±0.4</td>
<td>0.7±0.1</td>
<td>0.1±0.0</td>
</tr>
<tr>
<td>Single Top (t)</td>
<td>2.0±0.3</td>
<td>1.8±0.2</td>
<td>0.5±0.1</td>
<td>0.1±0.0</td>
</tr>
<tr>
<td>Z+LF</td>
<td>1.1±0.2</td>
<td>0.7±0.1</td>
<td>0.2±0.0</td>
<td>0.1±0.0</td>
</tr>
<tr>
<td>$Wb\bar{b}$</td>
<td>33.9±13.3</td>
<td>10.6±4.3</td>
<td>2.0±0.9</td>
<td>0.5±0.2</td>
</tr>
<tr>
<td>$Wc\bar{c}$/Wc</td>
<td>6.1±2.5</td>
<td>2.7±1.1</td>
<td>0.7±0.3</td>
<td>0.2±0.1</td>
</tr>
<tr>
<td>Mistags</td>
<td>4.3±1.0</td>
<td>2.6±0.7</td>
<td>0.7±0.2</td>
<td>0.2±0.1</td>
</tr>
<tr>
<td>Non-W</td>
<td>2.7±1.9</td>
<td>0.8±1.5</td>
<td>0.5±1.5</td>
<td>0.2±1.5</td>
</tr>
<tr>
<td>Total Background</td>
<td>61.6±16.6</td>
<td>23.4±7.3</td>
<td>5.7±3.3</td>
<td>1.4±1.7</td>
</tr>
<tr>
<td>SM $t\bar{t}$ (8.8 pb)</td>
<td>32.9±5.2</td>
<td>90.2±14.1</td>
<td>113.7±17.6</td>
<td>41.1±6.3</td>
</tr>
<tr>
<td>Total Prediction</td>
<td>94.5±17.4</td>
<td>113.6±15.9</td>
<td>119.4±17.9</td>
<td>42.5±6.5</td>
</tr>
<tr>
<td>Observed</td>
<td>107.0</td>
<td>118.0</td>
<td>115.0</td>
<td>44.0</td>
</tr>
</tbody>
</table>

X is any state with different acceptance than Wb

$B(t \rightarrow Zc) < 13\%$

$B(t \rightarrow \text{invisible}) < 9\%$
Flavor-Changing Neutral Currents

- SM FCNC branching fractions are ~10^{-14}
 - direct searches for $t \rightarrow Zq$ are sensitive to new physics

\[\chi^2 = \left(\frac{m_{W,\text{rec}} - m_{W,\text{PDG}}}{\sigma_W} \right)^2 + \left(\frac{m_{t-Wb,\text{rec}} - m_t}{\sigma_{t-Wb}} \right)^2 + \left(\frac{m_{t-Zq,\text{rec}} - m_t}{\sigma_{t-Zq}} \right)^2 \]

Best Fit to Mass χ^2

- $B(t \rightarrow Zq) < 3.7\%$ @ 95% C.L.
Search for $t \rightarrow H^+ b$

- Use $\ell+$jets events with 2 b tags
 - kinematic fit to select H^+ daughter candidate jets
 - plot mass of jet pair

![Graph showing data fit with MH120 template][CDF Run II Preliminary]

- $L = 2.2 \pm 0.1 \text{ fb}^{-1}$
- $N(\text{Higgs}) = 44^{+12.34}_{-11.88}$
- $N(\text{W}) = 162.24^{+13.58}_{-13.12}$
- $N(\text{BK}) = 13.78^{+7.16}_{-7.14}$
- $\chi^2 = 0.753920082$

![Graph showing $\text{Br}(t \rightarrow H^+ b)$ with all H^+ bands][CDF Run II Preliminary]
Search for t' Quark

- Some SUSY models, and the Little Higgs model, predict the existence of a heavy 4th-generation quark (t')

- search using distributions of reconstructed top mass and sum of jet p_T

$m_{t'} > 284$ GeV @ 95% C.L.
Top at the LHC

• LHC will be a top factory ($\sigma \approx 850$ pb):
 - one million events per fb$^{-1}$ ➞ can trade statistics for modes with reduced systematics

• Top will be a valuable standard candle for calibrating jet energy scale and b identification performance

• Expected precisions with 10fb$^{-1}$ of low-luminosity data:
 - Top quark mass: total uncertainty of 1 GeV
 - FCNC: sensitivity down to BF’s of 10^{-3} to 10^{-4}
 - spin correlations: 4% uncertainty on parameters
 - W helicity: measure fractions to 1-2%
Summary

• The precision and variety of top quark measurements is rapidly improving
 - highlighted by mass measurement with precision of 0.8%
 - several measurement of interaction and decay properties, as well as searches for new particles, have not yet revealed any non-SM effects

• The era of single-top production measurements has begun

• The LHC will provide a major improvement in precision

We have learned much about the top quark in the past 13 years
In a few more years it will be as familiar as the Z boson and b quark
The Top Quark in Experiment

- The world’s sample of top quarks comes exclusively from the Tevatron
 - searches for anomalous production also done at HERA
 - “top factory” at LHC is coming soon...
- CDF and DØ detector have similar capabilities for top quark physics
 - data samples are $\sim3\text{fb}^{-1}$ per experiment $\Rightarrow \sim20000\, tt^{-}$ and 7000 single-top events produced
 - branching ratios and selection efficiencies reduce the sample available for analysis
Search for Resonant t\bar{t} Production

CDF Run II Preliminary 1.9 fb⁻¹

Γ_G = 0.30 M_G

- Expected 95% C.L. upper limit ±\sigma
- Expected 95% C.L. lower limit ±\sigma

Unfolded M_{\tilde{t}} [GeV/c²]

- SM Expectation
- SM Uncertainties
- Data, \int L = 1.9 ± 0.1 fb⁻¹

Unfolded M_{\tilde{t}t} [GeV/c²]

- W+Charm
- W+Bottom

E.W. Varnes
34th International Conference on High-Energy Physics
August 3, 2008