
Lecture 37: Superposition and the Shell 
Theorems

• Last time, we saw that Newton could explain both the fall of 
an apple near the Earth and the motion of the moon around 
the Earth if we assumed that a universal force called “gravity”  
acted between all pairs of objects with the form:

• But what if there are more than two objects in the system?
– What is the force on m3 below?
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• We can simply add up the forces of all the two-body 
interactions involving m3.  This is called superposition:

Note that this is a vector equation!

• For example, the force on m3 in the situation below would 
be 0:

• Note that this is not the force that the m1 + m2 system 
would exert if we assumed all the mass was at the center 
of mass of that system
– That force would be infinite!
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• Superposition seems like a natural, elegant way to deal 
with the gravitational attraction of multiple objects

• But it was a huge problem for Newton
– In his analysis of the moon and the apple, in which the ideas 

of gravity were developed, he had assumed that the Earth 
acted as a point particle with all its mass at the center

– The Earth is far enough from the moon that this might not be 
a bad approximation

– However, it’ s clearly a bad approximation for the apple!  
And Newton knew that in the general case a system of 
particles doesn’ t exert gravity as though all the mass were at 
the center of mass

• So he needed to determine how big a correction to make to 
his equations to account for the fact that the Earth is not a 
point particle



The Shell Theorems
• So he wanted to find the exact gravitational force on m for 

the situation below:

• In other words, he needed to apply superposition to every 
little piece of the spherical mass
– This is the problem for which he invented calculus
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• To begin, Newton realized that the sphere could be broken 
up into thin shells nested inside of each other.  Further, 
each shell could be broken up into a collection of thin 
rings.  So the first problem to solve was this:

• What is the force on m from the ring?

• Symmetry tells us that the net force must be along the y 
direction

• The y component of force from a small element of mass 
dm is:
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• Therefore the total force from the ring is:

• Now we assume our ring has a thickness t and spans an 
angle of dθ as viewed from the center of the sphere

• This means that the mass of the ring is:  

where ρ is the density of the shell
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• Now we are poised to find the total force from the shell, by 
taking mring to be dm and adding up all the contributions:

• The variables α and θ depend on x.  We need to quantify 
this dependence to complete the integral

• First off, we see that:
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• Using the Law of Cosines, we can show that:

And we can differentiate this to find:

• Now we can express the entire integral in terms of x:
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• Now we note that the total mass of the shell is given by:
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• This means that:

• The shell really does act as though all the mass is 
concentrated at the center!

• And since the spherical Earth is nothing more than a 
collection of shells, Newton’s assumption that even the 
apple can be treated as though only a point mass at the 
center of the Earth is acting on it is exactly true!

• Note that this result holds for a sphere even if the density 
varies as a function of radius
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The Second Shell Theorem
• What about the force felt by a mass inside a uniform shell?

• All that changes in our derivation is the lower limit of 
integration:

• So inside a shell one feels no gravity at all!
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