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Active random forces can drive differential 
cellular positioning and enhance motor-driven 
transport

ABSTRACT  Cells are remarkable machines capable of performing an exquisite range of func-
tions, many of which depend crucially on the activity of molecular motors that generate 
forces. Recent experiments have shown that intracellular random movements are not solely 
thermal in nature but also arise from stochasticity in the forces from these molecular motors. 
Here we consider the effects of these nonthermal random forces. We show that stochastic 
motor force not only enhances diffusion but also leads to size-dependent transport of objects 
that depends on the local density of the cytoskeletal filaments on which motors operate. As 
a consequence, we find that objects that are larger than the mesh size of the cytoskeleton 
should be attracted to regions of high cytoskeletal density, while objects that are smaller than 
the mesh size will preferentially avoid these regions. These results suggest a mechanism for 
size-based organelle positioning and also suggest that motor-driven random forces can ad-
ditionally enhance motor-driven transport.

INTRODUCTION
Inside cells, molecular motors use chemical reactions to ratchet fa-
vorable thermal fluctuations in order to generate the forces that 
power many cellular processes, such as organelle transport, cell divi-
sion, and motility (Oster, 2002; Kolomeisky and Fisher, 2007). How-
ever, because the cytoskeleton that motors operate on are disor-
dered and the chemical reactions are stochastic, active forces that 
these motors create are themselves random in magnitude and ori-
entation. Recent experiments have quantified the intracellular ran-
dom motions generated by the forces from molecular motors and 
have shown that these random motions are nonequilibrium in na-

ture (Martin et al., 2001; Guo et al., 2014); that is, they are not con-
strained by the physics governing equilibrium conditions, such as 
the fluctuation-dissipation theorem (FDT) (Turlier et al., 2016). Here 
we develop a physical theory for how random motor forces propa-
gate through the complex viscoelastic environment of the cell, 
which is composed of cytoplasm and cytoskeleton, and the effect of 
these forces on objects such as ribosomes, mitochondria, and other 
organelles immersed in the intracellular milieu. We show that de-
pending on the object size, stochastic motor force is not only suffi-
cient to enhance their diffusive transport but can also generate inho-
mogeneous spatial distributions of these objects, which could 
provide a mechanism for organelle positioning in cells. The ever 
present nature of these fluctuating random forces can even enhance 
molecular motor function itself.

It is well known that biological systems are out of thermal equi-
librium. At the length scales of molecular and cellular biology, 
though, it is much less clear whether these systems are close enough 
to equilibrium that standard thermodynamics is applicable. A major 
guiding principle in conceptualizing and modeling processes at 
these scales has been the FDT, which relates the dissipative part of 
the linear response of a physical quantity to an external perturbation 
(e.g., the drag coefficient) to the correlation spectrum of the physi-
cal quantity (e.g., the autocorrelation of the velocity), with the 
relationship depending solely on the temperature (Kubo, 1966; 
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Reichl, 2016). One of the first experiments that suggested a break-
down in the FDT at cellular scales examined oscillations of hair bun-
dles that were perturbed by a small glass fiber and found that a 
single temperature could not account for the response, nor was the 
effective temperature equal to the actual temperature of the system 
(Martin et al., 2001). Later work went on to quantify the magnitude 
of stochastic motor forces inside cells and showed that the fluctua-
tions of these forces led to enhanced diffusive transport whether or 
not the particles were large or small compared with the mesh size of 
the cytoskeleton (Guo et al., 2014).

What are the potential consequences of these nonthermal, mo-
tor-driven random forces inside cells? To address this question, we 
begin by deriving a theory for the dynamics of objects immersed 
within a cytoplasm driven by random motor forces and random ther-
mal forces. While previous theoretical work has described the char-
acteristics of random motions of the cytoskeleton and cytosol due 
to motor stochasticity (Lau et  al., 2003; Mackintosh and Levine, 
2008) and found that in confined actomyosin systems random forces 
can drive the transport of large organelles, such as the nucleus, to 
the walls of the confining region (Rupprecht et al., 2018), here we 
examine motion within the cytoplasm itself and focus on how ran-
dom forces in the cytoskeleton affect different sized objects. For 
example, small objects live in the fluid region of the cytoplasm. 
These objects will not directly experience the shaking of the actin 
polymers due to molecular motors, but rather feel the jittering mo-
tion of the fluid that is induced by the undulating actin and thermal 
random force. Larger objects, though, are in contact with the actin 
network and directly experience the jostling of the network. Are 
these motions equivalent, or are there observable differences be-
tween them?

We begin by deriving a theory for the dynamics of objects within 
the stochastic environment of the cell. We treat the cytoplasm using 
a two-phase description (Alt and Dembo, 1999; Cogan and Guy, 
2010; Li and Sun, 2018), where the cytoskeleton is treated as a vis-
coelastic network of volume fraction φ, surrounded by the viscous 
cytosol of viscosity η (Figure 1). The motion of the cytoskeleton with 
respect to the cytosol produces a viscous drag proportional to the 
difference in velocities. Defining the cytoskeletal and cytosolic ve-
locities as vn and vf, respectively, the force balance on each phase 
(cytoskeleton or cytosol) gives
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where P is the hydrostatic pressure and ˆ nσ  is the network stress ten-
sor. In the literature, groups often assume that the actin network is 
either a viscous fluid or an elastic solid (Mofrad, 2009). To capture 
both of these behaviors in a single model, we assume that the net-
work stress obeys the Maxwell model:
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with μ and K the shear and bulk viscosities of the network, respec-
tively, and Î  the identity tensor. Using this assumption (Eq. 2), the 
cytoskeleton behaves like an elastic solid on times that are shorter 
than the relaxation time τ and like a viscous fluid on times longer 
than τ. The model includes the molecular motors using a force den-
sity tensor p̂m that accounts for the average dipole-distributed 
force f exerted by each motor, as well as the average orientation d 
of the motor molecules. If the density of the motor molecules is ρm, 
then
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The dipole force is then distributed over the size of the motor 
molecules, λ, using the kernel
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that spreads out the motor force density along the direction of the 
orientation of the molecule in such a way that the net force is zero, 
as required by Newton’s third law. The force written in this manner 
acts as a stress on the network, as opposed to treating them as 
strictly random forces, as in Guo et al. (2014). (The network can also 
experience nonzero random forces that do not obey FDT due to 
polymerization/depolymerization of the actin. Incorporating these 
forces into the model follows the same type of procedure and leads 
to qualitatively similar results.) Under the assumption that the net 
flow within the cell is zero, the fluid velocity is directly proportional 
to the cytosolic velocity, vf = –φ vn/(1 – φ).  If we then treat the motor 
force density as a random matrix, p̂ ˆm mη= , such that 

t t t tˆ , ˆ , cm ij m kl m ik jl, ,
2x x x xη η δ δ δ δ( ) ( ) ( ) ( )′ ′ = − ′ − ′ , the cytosolic 

velocity obeys a damped, stochastic heat equation, which can be 
solved using a Green’s function approach (see the Supplemental 
Text). The standard deviation (SD) of the motor noise is defined by 
the parameter cm.

RESULTS AND DISCUSSION
The motion of objects inside a cell are then driven by two separate 
stochastic effects, thermal random forces from the environment and 
stochastic random forces from the molecular motors. We consider 
two scenarios to determine the motion of these objects. First, for 
objects that are small compared with the pore size of the actin net-
work (∼50–100 nm [Keren et al., 2009; Guo et al., 2014]), the objects 
interact predominantly with the fluid, and their motion is given by

FIGURE 1:  The viscoelastic cytoskeleton model. Our two-phase 
model treats the inside of the cell as a network of cross-linked 
cytoskeletal filaments (red) immersed in the fluid cytosol (blue). The 
action of motor molecules (green) exerts equal and opposite forces f 
on the network at a distance comparable to the size of the motor 
(λ∼100 nm) (Lodish et al., 2000). Movement of the cytoskeleton 
through the viscous cytosol is resisted by a drag force that is 
proportional to the difference in velocity between the cytoskeleton 
and the cytosol. Deformation of the cytoskeletal network produces a 
viscoelastic stress in the network.
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where ζ = 6πηa is the Stokes drag coefficient for a particle of radius 
a in a fluid of viscosity η, xp is the position of the object, and ξp is the 
random thermal forces, defined by <ξp (t), ξp(t′)> = 2ζkBT δ(t – t′) 
(Figure 2a). To determine the average motion of the object, we want 
to integrate Eq. 5 to find the mean-squared displacement (MSD). 
Note that both the random force and the fluid velocity are stochastic 
variables. As detailed in the Supplemental Text, the solution for the 

MSD requires some simplifying assumptions. First, we treat the dy-
namics in one dimension. In addition, we can use relevant time- and 
length scales to reduce some of the complexity. The timescale over 
which the network velocity diffuses over a length the size of a mol-
ecule is given approximately by α ∼ ηλ2/G′L2, where the viscosity of 
the cytoplasm is η ∼10–3–102 Pa s, the elastic modulus for the cyto-
skeleton is G′ ∼ 1 Pa (Guo et al., 2014), and L ∼ 100 nm is the pore 
size of the actin network (Keren et  al., 2009). Therefore, α ∼ 
10–3–10–2 s. Microrheology measurements suggest that the relax-
ation time of the cytoskeleton is τ ∼ 0.1–1 s. Therefore, α is reason-
ably small compared with τ. Using these estimates, we find that the 
MSD of the object is approximately given by
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where Dp ∼ 10 μm2/s is the diffusion coefficient of the object pre-
dicted from FDT and the Stokes relation, Da is a diffusion coefficient 
due to the stochasticity of the active motors, and Γ is a parameter 
that also depends on the motor activity. Both Da and Γ scale as σφ2, 
where σ is the variance of the motor fluctuations. We can then define 
an effective diffusion coefficient, Deff = Da + Dp. In Guo et al. (2014) 
small dye molecules were observed to diffuse faster in active cells 
compared with ATP-depleted cells. We find that Eq. 2 is in excellent 
agreement with measured diffusion data from Figure 7c of Guo et al. 
(2014) of this paper with parameters Deff = 22.7 μm2/s, Γ = 55.2 μm2, 
and τ = 0.12 s, while for ATP-depleted cells (unfilled points), the best 
parameters are Deff = 12.0 μm2/s, Γ    = 51.0 μm2, and τ = 0.42 s 
(Figure 2b). Consistent with our model, the data show larger diffu-
sion for active cells than for ATP-depleted cells. Our parameter val-
ues for the relaxation times are also consistent with measured values 
of τ ∼ 0.1–1 s (Kole et al., 2005; Hosu et al., 2008; Rubinstein et al., 
2009) and suggest that as motor activity is reduced the network may 
become less dynamic (i.e., with longer relaxation times).

When the object is larger than the size of the meshwork, its mo-
tion is strongly hindered by the presence of the actin filaments: To 
move, the network must reorganize (Figure 2c). Because we directly 
account for the viscoelasticity of the network through the Maxwell 
model, our model accounts for dynamic reorientation of the cyto-
skeleton without additional assumptions. Then, the motion of the 
particle follows the local motion of the network, dxp/dt = vn, and we 
find hindered motion on short timescales and diffusive motion on 
timescales longer than τ (as shown by the change in slope in Figure 
2d that depends on τ). On long timescales, the MSD is (see the 
Supplemental Text for complete details
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This result that the MSD is subdiffusive on short times and then 
transitions to linear for times greater than τ is qualitatively consistent 
with previous experiments (Guo et al., 2014). To show that our ana-
lytical solutions are consistent with the results from the full two-
phase dynamics, we simulated the equations of motion (see Supple-
mental Text, Eq. 6) and used the resulting velocity to drive an 
advection-diffusion equation for a concentration. The concentration 
is found to diffuse more rapidly as the magnitude of the stochastic 
motor forces increases (Figure 2, e and f).

FIGURE 2:  The effect of stochastic motor force on objects in the 
cytoplasm. (a) In the cytoplasm, small objects interact predominantly 
with the fluid, not the cytoskeleton, and can therefore be modeled as 
Brownian particles acted on by random thermal forces ξ and adrift 
within the fluid. The stochastic motor-driven motion of the 
cytoskeleton (dark red arrows) induces random flows of the fluid 
(black arrows), and these fluid flows then push on the object. 
(b) Diffusive spreading of small dye molecules in active cells (black 
circles) and ATP-depleted cells (red circles) taken from Guo et al. 
(2014) is explained by Eq. 2 (solid lines) with the parameters given in 
the text. (c) Objects that are larger than the mesh size of the 
cytoskeleton are restrained by the network and diffuse due to 
reorganization of the cytoskeleton, which is naturally accounted for by 
the Maxwell model. For this case, our model leads to slow motion of 
the particle on short timescales and diffusive behavior for t < τ . 
(d) Simulations of the stochastic two-phase equations also lead to 
enhanced diffusion due to motor noise. (e) The color map shows the 
concentration of diffusing particles that are also advected by the 
cytosolic velocity induced by motor fluctuations at three different 
times for cases where the SD of the motor noise was 0.01 (top panel) 
and 0.1 (bottom panel). (f) Slices through the concentration profile at 
different times for motor noise SDs of 0.01 (black) and 0.1 (red).
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That random motor forces can lead to enhanced diffusion on 
long timescales is not surprising. However, we find that motor-driven 
fluctuations of small objects scale like the square of the volume frac-
tion of the cytoskeleton, whereas the fluctuations of large objects 
scale like the volume fraction of the cytosol. If we then consider a 
case where the cytoskeletal density is spatially dependent, then 
small objects feel increased random forces as they move up the 
gradient in cytoskeletal density, while large objects will feel in-
creased random forces when they move down a cytoskeletal density 
gradient. This difference will then result in differential positioning of 
small and large objects in a cytoskeletal density gradient. To put this 
on firm theoretical grounds, the Kramers–Moyal expansion provides 
a way to derive the transport equation for stochastically fluctuating 
particles (Tabar, 2019). If the random forces are isotropic with an 
equal probability for moving in the positive and negative directions, 
then the leading order effect of the fluctuating force is that the par-
ticle flux depends on the gradient of the time rate of change of the 
MSD times the concentration C as
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This result can be understood physically by considering two con-
tainers separated by a small channel. The likelihood that a particle in 
one container passes through the channel into the other container is 
related to how large the random fluctuating motions of the particles 
are. Therefore, if the fluctuations of the particles are larger in one of 
the containers than in the other, more particles will leave from this 
container than leave from the other container. That is, there will be 
a net flux of particles out of the container that has the larger random 
motions. In the context of objects moving with the cytoskeleton, this 
suggests that objects smaller than the mesh size will localize in re-
gions of low cytoskeletal density, while objects that are larger than 
the mesh size will preferentially localize to higher densities of actin. 
However, it is likely that there will be higher concentrations of mo-
tors where the network volume fraction is higher, which would in-
crease the magnitude of the random forces from the motors and 
could counteract this effect.

As a test of this result, we simulated our two-phase cytoskeleton 
model with spatially dependent volume fractions of actin, φ = φ0(1 + 
0.8 cos(kxx) cos(kyy)) (Figure 3). We then solved an advection-diffu-
sion equation for a concentration of particles, with the advection 
velocity given by either the network velocity (which corresponds to 
the motion of objects that are large compared with the cytoskeletal 
velocity) or the cytosolic velocity (for objects smaller than the cyto-
skeletal velocity). We found that on timescales less than a second, 
the small objects aggregated in regions of low volume fraction 
(Figure 3, center panels), while the large objects aggregated in re-
gions of high volume fraction (Figure 3, right panels). The qualitative 
effect predicted from Eq. 4 is then validated by our numerical simu-
lations of the stochastic two-phase equations, which lead to particle 
localization consistent with the magnitude of the nonthermal 
fluctuations.

Another possible consequence of nonthermal cytoskeletal noise 
is nonuniform spatial positioning of objects in a confined space, 
such as the cytoplasm of the cell, even when the network volume 
fraction is uniform. Near confining surfaces, objects experience in-
creased hydrodynamic drag due to wall effects (Happel and Brenner, 
1983). However, if the random force obeys FDT, the increased drag 
is balanced by the random force, and diffusion still drives objects to 
be uniformly distributed (Dufresne et al., 2000). When FDT breaks 
down, though, a relationship between the random force and drag is 
not expected. Consequently, small objects that mostly experience 

thermal random forcing that obeys FDT will be uniformly distrib-
uted in the cell, whereas larger objects, such as mitochondria and 
even the nucleus, that experience motor-driven random force will 
be preferentially positioned near surfaces, as predicted previously 
(Rupprecht et al., 2018). To test whether our model also predicts 
that large objects preferentially localize in confined regions, we in-
cluded a finite-sized rigid disk into our fluctuating two-phase cyto-
skeleton simulations. The rigid disk was implemented using the 
Moving Boundary Node Method (Wolgemuth and Zajac, 2010), as 
described in the Supplemental Text. We simulated the motion on 
an 80 × 80 grid, corresponding to a 4 μm × 4 μm region; the disk 
radius was 0.33 μm. We started by simulating the motion of an un-
confined object, which was implemented using periodic boundary 
conditions on the domain. We found that the object’s trajectory 
fluctuated about the starting point (Figure 4a). The MSD for the mo-
tion was subdiffusive for short times and then diffusive on long tim-
escales, consistent with the predictions from our analytical results 
(Figure 2d). We then simulated the disk in a confined region by 
setting the cytoskeletal velocity to zero on the domain boundaries. 
We found that the object fluctuated about its starting location, but 
then executed directed motion toward the bottom wall (Figure 4c). 
After fluctuating for a period of time near the bottom wall, the ob-
ject then moved in a directed manner toward the right wall and re-
mained near the bottom right corner of the domain for the remain-
der of the simulation. The MSD for the confined motion (Figure 4d) 
showed superdiffusive behavior for short timescales that then 
slowed at longer timescales. Once the object was at the wall, the 
MSD was subdiffusive, indicating that it was being attracted toward 
the walls. These results are similar to those found in Rupprecht et al. 
(2018). Interestingly, though, the Rupprecht et al. model involved 
temporally correlated noise, whereas our model assumes spatially 

FIGURE 3:  Spatial variations in the volume fraction lead to 
aggregation based on size. Numerical solution of the transport of a 
concentration of diffusing particles that is also actively driven by 
random motor forces from the two-phase cytoskeletal model shows 
aggregation consistent with our predictions. We used a uniform 
(a) and two spatially dependent concentration profiles (b and c) for the 
actin cytoskeleton. Time averaging the diffusing particle concentration 
leads to density profiles that are higher in regions of lower 
cytoskeletal density for small objects (center panels), whereas large 
objects aggregate in regions where the cytoskeletal density is highest 
(right panels). The color map shows low concentrations as blue and 
high concentrations as yellow. Simulations were performed with the 
parameters given in the Supplemental Text.
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correlated noise. This suggests that nonwhite noise may be suffi-
cient to drive positioning in confined spaces. Since the nucleus in 
most cells is located near the cell center, these results suggest that 
nuclear positioning requires active mechanisms to maintain 
(Almonacid et al., 2015). For mitochondria, active mechanisms are 
also involved in positioning them near the nucleus in cells such as 
the oocyte (Duan et al., 2020).

These results suggest other potentially important conse-
quences for organelle positioning in cells (Figure 5, a and b). For 
example, ribosomes that are comparable in size to the pore size 
(∼20–30 nm) are seen to aggregate near focal adhesions (Willett 
et al., 2010), where actin is in higher concentrations. In plants, the 
pollen tube carries male gametes to the female gametophyte (Cai 
et al., 2014). The structure of a pollen tube is divided into two re-
gions, a nongrowing shank and a domed, apical region, which is 
where growth occurs. While the tip of the apical region has very 
little actin, the transition point between the growing region and 
the shank (sometimes called the “subapex”) is filled with an actin-
rich structure, known as the fringe. During growth, small secretory 
vesicles in the pollen tube aggregate at the front of the apical 
zone, the region mostly devoid of actin, whereas larger vesicles are 
excluded from this region and remain in the actin-rich shank and 
subapex (Cai et al., 2014) (Figure 5b). Indeed, actin and myosin are 
observed to be involved in many aspects of organelle positioning 
(see Trivedi et al., 2014, and Almonacid et al., 2015, for example), 

FIGURE 4:  Confinement leads to aggregation of large objects near walls. Numerical solution of 
a finite-sized disk moving in the randomly driven cytoskeleton. (a) Snapshot of the simulation, 
showing the disk (light blue) and the cytoskeletal velocity vectors (red arrows). There is a white 
line showing the trajectory of the object (which is barely observable at the center of the object. 
(b) The MSD of the unconfined object. The MSD is qualitatively similar to what is predicted from 
our analytical model (Figure 2d). For confined objects (c), the object is attracted toward the 
walls. The trajectory (white line) is now clearly visible. The object makes large directed motions. 
(d) The MSD for the particle is qualitatively different from that for the unconfined particle. The 
full MSD is shown in red. The blue dots show the MSD for the motion during the last 0.2 s of the 
simulation. This highlights that the object does not move substantially once it gets to the wall

and the results presented here are likely in-
volved. These results also suggest a 
straightforward experimental test. Cells 
that are plated on micropatterned patches 
of extracellular matrix proteins that are 
asymmetric on lengths smaller than the cell 
show domains that are enriched in actin 
(Landere-Grzybowska et al., 2010). There-
fore, small dye molecules are predicted to 
have higher concentrations in regions of 
lower actin concentration, which can be as-
sessed using confocal microscopy.

Yet another consequence of random 
motor forces and that different sized parti-
cles experience fluctuations that scale dif-
ferently with cytoskeletal volume fraction is 
that this leads to the possibility that intra-
cellular processes could use a simple Feyn-
man–Smoluchowski ratchet (Smoluchowski, 
1912; Feynman, 1963) to perform mean-
ingful work (Figure 5c). For example, mole-
cular motors, like myosin, are smaller than 
the actin mesh size, whereas the cargo they 
transport is much larger. Therefore, a single 
myosin molecule (which acts like the 
ratchet and the pawl) experiences nonther-
mal random forces from the sloshing of the 
cytosol (proportional to φ), whereas the 
cargo feels the nonthermal random forces 
of the shaking of the cytoskeleton (∝(1 – 
φ)). Since the magnitude of the force fluc-
tuations is somewhat analogous to the 
temperature, then motor molecules (the 
ratchet), such as kinesin, myosin, and dy-
nein, which are smaller than the mesh size, 
will experience fluctuations (an effective 
temperature) that are smaller than that of 

the cargo (the paddle). In this case, we expect that the motor mol-
ecule will move faster than it would in the presence of purely ther-
mal fluctuations.

Here we have shown that the stochasticity of intracellular motors 
can lead to a number of unexpected consequences, such as en-
hanced diffusion of small objects, object sorting based on size 
(which provides a mechanism for organelle positioning), and size-
dependent fluctuations that can enable Feynman–Smoluchowski 
ratchets to do useful work. The principal components of our model 
that lead to the behavior that we describe are 1) a porous cytoskel-
etal network immersed in a viscous cytosol, 2) molecular motors that 
exert random forces on the network, and 3) dynamic reorganization 
of the elastic components of the network. Therefore, other rheologi-
cal descriptions of the cytoskeleton that still contain these three 
components, such as soft glassy rheology (Madadapu et al., 2008), 
should lead to behavior similar to what is described here. We point 
out that the last of these requirements is important because, for a 
purely elastic solid network, objects that are larger than the pore 
size are expected to be stuck to the network. If the network does not 
reorganize, the object cannot free itself from its local bonds and it 
will not diffuse. The experiments we suggest here can be performed 
to validate our work and to determine the magnitude of these ef-
fects within cells. Taken as a whole, these results constitute an un-
derstanding of how cells can use motor stochasticity to drive intra-
cellular processes.
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FIGURE 5:  Size dependence of the effective temperature can drive 
cellular functions. (a) Our model predicts that small objects experience 
an effective temperature proportional to the cytoskeletal volume 
fraction φ, whereas objects that are larger than the mesh size 
experience an effective temperature proportional to 1 – φ. One 
consequence of this effect is that smaller objects can get repelled 
from regions of high volume fraction, while larger objects will be 
attracted to these regions. For example, in pollen tubes (b), small 
vesicles are localized near the tip (the apex), which is largely devoid of 
actin (red filaments) (Cai et al., 2014). The shank and subapex have 
more actin, and larger organelles are localized in these regions. (c) A 
size-dependent effective temperature can also lead to an operational 
Feynman–Smoluchowski ratchet, which may impact molecular motors. 
If the ratchet (green) and pawl (brown) are at a lower temperature 
than the paddle (yellow), then the ratchet can do work. In cells, the 
ratchet and pawl are analogous to a molecular motor, such as myosin 
(green), and the paddle is analogous to the cargo (yellow).




