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Synopsis The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of

our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and

health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we

provide a new framework and a road map for using experiments and computation to understand dynamic biological

systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight

the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such

as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to

make such models transparent, compatible with existing theories of biological function, and to make biological data sets

readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not

only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary

interactions between scientists.

Introduction

How do we define life quantitatively? All living systems

fall into a multidimensional space defined by scales,

factors, and biological components. To understand life,

we must be able to integrate complex biological pro-

cesses across diverse scales—Physical (e.g., Spatial and

Temporal), Chemical, and Biological (Box 1). In ad-

dition to multiple scales, extrinsic factors such as en-

vironmental stressors and noise can impact a system.

Finally, the response of a system depends on its com-

ponents, from molecules, cells, individuals, communi-

ties, populations to ecosystems. We posit that

knowledge of these three dimensions, that is, biological

components, factors that act on a system, and the scale

of a system (Fig. 1), is necessary and sufficient to

predict a system’s behavior. The axes framework can

serve as a universal vocabulary for defining and com-

paring biological systems.

Most biological phenomena span multiple dimen-

sions of the axes of life, exhibiting various degrees of

emergence, self-organization, robustness, resilience,

and complexity (Kauffman 1992; Stelling et al.

2004; Mazzocchi 2008; Wolf et al. 2018). A classic

example of a challenge involving multiple dimen-

sions of the axes is found in healthcare. Most dis-

eases involve the dysfunction of biological

components at multiple scales from genes to organ

systems usually in response to external stressors like

infection or diet. The actions of those altered pro-

cesses change the behavior of cells, which then lead

to systemic effects within the body over time.

Multi-dimensional problems are ubiquitous in bi-

ology. For example, an integrative analysis of numer-

ous genetic components and environmental factors is

needed to tease out the effects of nature and nurture

in development (Robinson 2004). This can help
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answer why similar mutations during development

sometimes lead to different disease symptoms after

birth (Kammenga 2017). Other examples that span

multiple dimensions include predicting from geno-

type the phenotype of an organism or organismal

community, and predicting how global temperature

change affects organismal behavior and ecosystem

balance. Even seemingly simple biological processes,

such as fish swimming, are multi-dimensional, in-

volving diverse biological components (muscles and

nerves), physical scale (muscle fibers and whole-body

mechanics), and biological factors (group swimming

behaviors on neural stimulation of muscles)

(Massarelli et al. 2017; Mekdara et al. 2018; Tytell

et al. 2018).

The traditional research paradigm focuses on fix-

ing two axes and varying the third. For example,

studying a bacterium exposed to an external pertur-

bation fixes both the scale and components, and

modulates the factors. Axes are also typically fixed

in an experiment to assign causality and to reduce

complexity (Platt 1964). Even within one Axis of

Life, the existence of interaction effects (e.g., epistatic

genetic effects on phenotype) are well documented

but hard to study due in part to small datasets. The

number of possible interactions explodes as multiple

scales are considered (combinatorial complexity).

While fixing axes improve the tractability of studying

a system, it also limits the linking of data across

scales or components. Theoretical and empirical

frameworks are needed for looking across the axes

and making educated hypotheses about which con-

nections across scales might be most fruitful to ex-

perimentally explore.

How do we foster and enable new research that

will effectively bridge across the axes? Iterative dialog

of experiments and computation will allow us to

determine generalizable principles to predict

responses of biological systems. Here we propose a

framework for predicting the behavior of such multi-

dimensional systems. We will focus on combating

four key impediments limiting our understanding

of dynamic multiscale systems. This ultimately

requires iterative interactions between diverse disci-

plines and between Data, Methods, and Theory. This

includes:

• multidimensional data generation and manage-

ment—generating, curating, and disseminating

relevant and high-quality data across multiple dis-

ciplines, scales, factors, and components;

• theoretical frameworks for synthesis—developing

theoretical framework that synthesizes data to

drive experimental hypotheses;

• methods to bridge the axes—developing and ap-

plying methods that integrate multi-dimensional

datasets and models to drive research in biological

systems; and

• interaction across disciplines—to foster these

goals, a culture of science is needed that educates,

supports, and values integrative and interdisciplin-

ary approaches.

Here we will address key questions in every step of

this process of understanding dynamic multiscale

systems.

Multi-dimensional data generation and management

The first step in understanding a system is to define

its location on the axes of life. This requires data

generation methods for characterizing its compo-

nents, scale, and factors that influence the system

behavior. An integrative approach to quality data

generation and management has the potential to

provide bridges between disciplines, breaking

through structural and theoretical bottlenecks.

There are several bottlenecks identified, including

choices of data that are appropriate to the system

under study, accessibility, and comprehensibility of

appropriate data by interdisciplinary communities,

Box 1: Terminologies

The axes of life: A framework for comparing biological systems based on their components, scale, and factors acting on the system.

Scale: A physical (e.g., micron and seconds), chemical (e.g., molecular weight), or biological (e.g., number of generations) unit of

measurement.

Component: A distinct biological unit with a specific function in a system (that can be acted upon by evolution) (e.g., protein, gene, or

organ).

Factors: These are external forces or agents that act on a system and change its position in the axes of life (e.g., diet, drugs, social

interactions, and climate change).

Multi-dimensional/multi-axes: This refers to challenges, datasets, or models that span all three axes’ dimensions (e.g., climate change).

Multi-scale: This is a subset of multi-dimensional systems that span multiple scales (spatial and temporal)

S. Chandrasekaran et al.2012
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the need for incorporation of quality measures at all

steps from data collection to model generation, and

the continued need of exploratory experimental work

to support and drive integrative approaches.

Briefly, current data generation practices provide

limited representation of all three axes. For example,

in conservation ecology, incorporating data across

realms (i.e., terrestrial, aquatic, and coastal, and ma-

rine) is necessary to provide a holistic view of the

ecosystem and possible strategies in conserving and

managing the system effectively (Tsang et al. 2019).

Traditionally, researchers have been trained to focus

on collecting the measurements within a specific dis-

cipline. However, the ecosystem is rarely isolated in

operation, the connections among ecosystem realms

are explicit and inexplicit.

To overcome the limitation, we recommend fund-

ing for collaborative studies that span all three axes.

As a concrete example of how this might be done,

we give a hypothetical research design from a field

where these effects are ever-present, the function of

the brain. To understand the development and

maintenance of memory, we need to know how ex-

ternal cues (axes: factors operating at organismal and

seconds scale) alter neuronal firing and the alteration

of dendritic spine morphology, potentially impacting

learning and memory (axes: components and

cellular-level/minutes scale). The morphological

changes, along with biochemical activity, then need

to be examined over the course of days to months,

during and in between learning activities, to deter-

mine what alterations occur and how they are me-

diated. With advances in the fields of genetically

expressed fluorescent probes and intra-vital imaging,

it is conceivable that in the near future it will be

possible to affix a microscope to the head of a

mouse, in such a way as to investigate these pro-

cesses during un-anesthetized actions.

Other examples of hypothetical multi-dimensional

research design include a consortium working to-

gether to study the impact of both global tempera-

ture change and local release of a toxin on microbial

metabolism and ecosystem biodiversity over a de-

cade; this study spans diverse scales (temporal, phys-

ical), factors (temperature and toxins), and

components (molecules, microbes, and plants).

Similarly, quantifying the fitness of a genome-wide

knockout library of Escherichia coli against short-

and long-term treatments of antibiotics, spans all

three axes.

The multi-dimensional studies do not necessarily

have to be large-scale consortium efforts. For exam-

ple, studying the effect of a honeybee transcriptional

regulator on neuronal transcription, brain

metabolism, and colony social behavior as a function

of diet, spans all three axes. Notably, a recent study

on the behavior of honeybees incorporates datasets

that span these three axes (Jones et al. 2020). The

authors analyze numerous biological components

(transcripts and chromatin modifications), quanti-

fied their variation based on social behavior of indi-

vidual honeybees, thus linking molecular and

organismal scales, and performed this study in vari-

ous queenless colonies that exhibited considerable

variation in bee behaviors (factors). This led them

to understand the role of plasticity in gene regulatory

networks on evolution of social behavior (Jones et al.

2020).

These recommendations on data generation go

against the traditional view of fixing various factors

or components, and experimenting in a controlled

environment. Varying a single factor at a time is an

essential part of strong inference (Platt 1964; Beard

and Kushmerick 2009). For example, traditional

studies on transcriptional regulation rely on perturb-

ing transcription factors individually to identify

causal regulation. However, recent studies have

used information theoretic tools to tease out the

effects of hundreds of transcription factors without

the need for perturbing one factor at a time

(Chandrasekaran et al. 2011; Marbach et al. 2012;

Jones et al. 2020). While this traditional approach

has been fruitful, it nevertheless limits the creation

of theories that span the axes of life. With the ad-

vance in methodologies and computational power,

tackling the complexity that span the axes is possible,

and the study systems are closer to reality.

Theoretical frameworks for synthesis

Before multi-dimensional systems are modeled, a

feasibility study should be conducted to ensure the

system can be causally inferred and simulated (e.g., is

predictable). By “predictable,” we do not imply that

the system’s behavior can be forecasted with 100%

accuracy. Rather, quantifying the extent of predict-

ability can ensure that we have identified some of the

causal factors that can continuously or transiently

influence the dynamics of biological systems. For ex-

ample, predicting the phenotype of an organism is

not possible unless relevant variables that influence

the phenotype (genome sequence and environmental

factors) are determined. If a system is not predictable

given a predefined set of measurements, then it may

not be worth studying until we identify the input

data and its critical variables needed to make it

predictable.

Roadmap for understanding dynamic multiscale systems 2013
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Through iterative model-driven experimental data

generation, any system can be made more predict-

able. This strategy was used to improve the regula-

tory network models of E. coli and Saccharomyces

cerevisiae (Covert et al. 2004; Chandrasekaran and

Price 2013). However, in some cases, our ability to

predict a phenotype from genotype may be limited if

the phenotype is strongly driven by noise (Eldar and

Elowitz 2010; Chalancon et al. 2012).

Interpretability of the framework is not necessary

at this stage; for example, black-box neural networks

in conjunction with techniques like cross-validation

can be used to broadly determine whether a system

is predictable. Once the predictability of a system is

established, techniques such as interpretable Artificial

Intelligence (AI) can be applied to identify the pat-

terns and build mechanistic models (Ribeiro et al.

2016; Yu et al. 2018).

Theoretical frameworks for reasoning about the

predictability of systems should be generalizable

and nevertheless make specific predictions/hypothe-

ses about each problem. Frameworks for determining

the predictability of a system can be either derived

from fundamental principles or empirical (data-

driven) (Horgan 1995). An empirical framework

for defining the predictability of a system can be

any method that takes one or more measurements

as input, and predicts one or more output measure-

ments. Empirical frameworks for integrating hetero-

geneous datasets can be broadly grouped into two

categories (1) whether measurements on different

scales can be made on the same entities or (2)

when different sub-populations or biological repli-

cates can be measured. When measurements at dif-

ferent scales can be made on the same entities,

strategies from the fields of multimodal learning

can be applied (Min et al. 2017). Otherwise, strate-

gies from manifold alignment can be used to con-

struct models of biological phenomena at individual

scales, and then alignment is performed to identify

connections between scales (Welch et al. 2017). This

recognition and development of such strategies are

particularly important, as many previous studies and

efforts have collected data at local or individual sys-

tem scale and within a single discipline.

Having an adequate approach and framework to

bridge and integrate the existing data across disci-

plines will allow the best use of precedent knowledge.

For example, assessing the impact of climate change

on the stream habitats that support stream fish pop-

ulation requires linking organism and ecosystem

scales. Previous studies have accumulated abundant

biological survey data from local and state studies. At

the same time, US Geological Survey has been

continuously recording long-term hydrological data,

such as daily streamflow and stream temperature

data nationwide. Recently, Tsang et al. developed a

framework to integrate these local and national

efforts (Tsang et al. 2021). This study showed that

data from either scale alone could not predict the

future climate impact on the changes on stream hy-

drologic and thermal habitat conditions, and the

possible impact on the fishes species they support

(Tsang et al. 2021). Similar approaches and concepts

can be applied when dealing with ecosystems level

problems.

Alternately, theoretical frameworks can be derived

from first principles of evolution, chemistry, mathe-

matics, computer science, or physics. For example,

studying the biosonar system of bats involves study-

ing how the physical attributes of the ears transform

the incoming ultrasonic echoes to encode sensory

information, and how the ear shapes of bats have

diversified in the course of evolution in 1400 differ-

ent species (Müller 2010; Gao et al. 2011; Ma and

Müller 2011). Understanding this process involves

integrating data from various physical and temporal

scales (acoustics), diverse ear components, and how

bat behaviors (factors) actively modulate ear struc-

ture. These first principles can also provide limits on

predictability. For instance, predicting electron trans-

fer in proteins may not be completely possible based

on the Heisenberg uncertainty principle. Another set

of examples are the computer science proofs of com-

putational complexity (“NP-hard problems”) for 3D

structure prediction problems (Torrisi et al. 2020),

which then help focus efforts on finding approxi-

mate solutions to difficult problems.

Mathematical modeling and simulations have

enormous potential to unravel the complex interac-

tions of biological phenomena occurring at different

scales (Wooley and Lin 2006; Voit 2019). An emerg-

ing type of mathematical model called multi-scale

models has allowed the linking of models at different

biological scales, from molecular-scale processes like

protein folding to entire organisms (Walpole et al.

2013; van Gestel and Tarnita 2017). For example,

multiscale modeling has been used to understand

the interactions across different scales that are nec-

essary for development of organs and diseases

(Schnell et al. 2007; George et al. 2015). However,

there are limited tools that allow the coupling/inte-

gration of models across axes dimensions. Moreover,

the modeling and analysis of interdependent biolog-

ical systems also require mathematical models capa-

ble of identifying the causal influences and capturing

either the Markovian or non-Markovian dynamics of

some biological constituents. The implementation of

S. Chandrasekaran et al.2014
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new techniques that link multiple axes dimensions to

study system-level outcomes would be invaluable in

understanding the complex interactions of biological

systems.

Another key challenge with new high throughput

technologies is that they generate thousands of cor-

relations between biological components. We cur-

rently lack mechanisms to rapidly validate these

correlations and assign causality (National

Academies of Sciences, Engineering, and Medicine,

Division on Earth and Life Studies, Board on Life

Sciences 2020). This requires theoretical frameworks

that bring together orthogonal high-throughput

datasets that can then be cross-verified against each

other to uncover functional or causal relationships.

Some recent attempts at this process include a study

that used a mathematical model of E. coli to recon-

cile thousands of transcriptomics, proteomics, and

enzyme kinetic measurements with physiological

measurements (Macklin et al. 2020), and a systems

biology approach called GEMINI that reconciles

transcriptional regulatory interactions from high-

throughput studies with metabolic data

(Chandrasekaran and Price 2013), Bridging across

axes will enable us to harness a wider range of data-

sets for rapid evaluation of correlations and deter-

mine causality.

In general, current theoretical methods lack the

ability to transition between axes dimensions as we

lack an underlying “objective” for models (Feist and

Palsson 2016). For example, do all living systems

maximize their biomass production, energy effi-

ciency, degree of emergence, self-organization, com-

plexity, and intelligence? These principles can be

represented mathematically but may not be accurate

biologically. It is unclear if given a genome sequence

and environmental factors as inputs to such a model,

a complex cell or human being would appear natu-

rally as an output.

Most of the mechanistic models of biological sys-

tems have not been validated against the system they

describe. This is sometimes due to the inability to

generate relevant data for model testing and valida-

tion, but it may also be due to a lack of access to

data because it is not publicly available. This brings

us back to the problem of not having better curated

and publicly available data that can be accessed

across researchers working in different disciplines.

Methods to bridge the axes

Development and application of methods for inte-

grative projects pose many unique challenges. Several

fundamental concerns must be addressed that are

often taken for granted in traditional systems. For

example, it is often difficult to define appropriate

objectives for studies bridging the systems, since

the datasets being integrated may approach the sys-

tem from orthogonal directions. The levels of spatial/

temporal scale may be so different that connections

are not obvious.

The ground-level challenge is to define the starting

scale of input data and final scale of our integrative

model, and then look to a theoretical framework and

practical methods to build bridges between these

levels. These differences may occur in multiple

aspects of the system under study, as exemplified

by the conceptual Axes of Life outlined above (Fig.

1) involving scales, factors, and components of bio-

logical systems.

As we build bridges between axes, we also need to

define and incorporate the granularity of the ap-

proach, defining points along the range of scale of

the model/system that are necessary to include. As

part of the National Science Foundation (NSF)

JumpStart meeting, the team repeatedly brought up

the challenges (and potential) of integrating work

across wide scale ranges, and whether it is possible

to ignore features and intermediate scale levels in the

approach. For example, for predicting a

physiological-scale phenotype (e.g., cancer) from

molecular-scale genotype (DNA sequence) one may

ignore explicit modeling of the cellular scale. The

challenge then centers on the questions: How do

we link across scales or components? Can we infer

anything about scales that cannot be measured? Will

links emerge naturally, or do we need to forge undis-

covered links in our method/model? For example, in

mechanistic models of metabolism, the phenotype

(growth of a cell) naturally emerges from interac-

tions between molecular components at a lower scale

(Karr et al. 2012; O’Brien et al. 2015). In contrast, in

empirical models that link mutations at the molec-

ular scale to a physiological phenotype, such as can-

cer (Vogelstein et al. 2013) or social behavior (Jones

et al. 2020), the links are “imposed” by the scientist.

The potential of applying AI to these challenges

promoted a vigorous discussion at the JumpStart

meeting. In particular, development and application

of transparent approaches to look inside the current

AI Black box was identified as a central goal, and is

described in more detail in another paper. Briefly,

some strategies to make AI transparent include link-

ing traditional models based on biological or math-

ematical principles with machine learning models

(Yang et al. 2019; Zampieri et al. 2019; Oruganty

et al. 2020). For example, by linking a machine

learning model of antibiotic action with a

Roadmap for understanding dynamic multiscale systems 2015
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mathematical model of host immunity, Cicchese

et al. were able to integrate molecular- and

cellular-scale datasets from both pathogen and host

(components), and create a mechanistic picture of

the impact of various antibiotic treatments (factors)

on pathogen clearance inside the lung infection site

from a few days to a month (temporal scale)

(Cicchese et al. 2021). Alternative strategies to

make AI transparent include altering the structure

of the AI model directly based on prior knowledge

of the biological system (Ma et al. 2018).

All of the typical challenges with managing data

are multiplied in integrative approaches, and the

flexibility of methods to deal with these challenges

will be necessary. For example, how do we deal with

noise? Noise operates at multiple spatio-temporal

scales and on various components, each of which

must be quantified in unique experimental manners,

and will need to be mined and integrated in a con-

sistent way into the resultant synthesis. Methods to

handle small and inconsistent datasets are also essen-

tial, since integrative efforts are often focused on

data-poor nascent fields that are under rapid devel-

opment and may require integration of results from

multiple groups (Sung et al. 2012).

As we move toward bridging across the axes of

life, a critical first step involves selection of

appropriate, tractable systems. Most biological pro-

cesses are complex (in the sense that their rate of

change may not only exhibit various degrees of non-

linearities, but also a non-trivial combination of

Markovian and non-Markovian dynamics). To

make headway, we should seek systems that are sim-

ple enough that we can isolate specific behaviors and

processes, while still being complex enough to re-

quire observations that span the axes dimensions.

Overall, the advantages of focusing on a few model

systems like E. coli should be carefully weighed

against its limitations. For example, we may miss

novel biological phenomena seen in exotic systems

like archaea or aplysia that can lead to fundamental

new insights.

One field where these questions might be cur-

rently addressable is neurobiology, where the action

of individual neurons influences organismal behav-

ior. The nematode Caenorhabditis elegans possesses a

relatively simple neural architecture that can be easily

visualized, and some researchers have already begun

to explore how activating light-sensitive ion channels

affect behaviors, such as motility (Sejnowski et al.

2014). Along the same lines, multiscale neuronal

analysis has revealed that brain regions exhibit

long-range memory/non-Markovian and multifractal

characteristics.

Work by Eric Tytell and collaborators attempts to

use a version of our proposed framework to study

seemingly simple biological processes—fish swim-

ming. Yet our understanding of this process has

been impeded by its multi-dimensionality. The

Tytell lab’s work focuses on using a well-

understood model organism, the lamprey. Because

of the relative simplicity of the lamprey’s structure

(cylindrical body geometry, a non-segmented noto-

chord, cuboidal muscle blocks, and a well-

characterized spinal central pattern generator) the

lab has been able to integrate isolated muscle experi-

ments with mathematical modeling to quantify the

effects of neural muscle stimulation on body me-

chanics (Tytell et al. 2018). They have applied

computational-fluid dynamics modeling to quantify

the effects of body mechanics on swimming behavior

(Hamlet et al. 2015) and the feedback of swimming

behavior on neural stimulation of muscles

(Massarelli et al. 2017). The lab is even extending

the studies to multiple individual fish swimming to-

gether (Mekdara et al. 2018). This integrative ap-

proach examines a biological problem across

diverse biological scales, components, and factors.

This has been facilitated by the collaboration among

modelers and experimental scientists and has the

Fig. 1. The axes of life. Biological systems span three orthogonal

axes spanning various scales (size and time), number of compo-

nents and interactions, and influenced by external factors. Factors

and components may operate at various scales. Characterizing a

system based on these three axes is necessary to predict its

behavior. The components axis can be considered a measure of

biological complexity of the system as defined in different bio-

logical disciplines. For example, in ecology, the complexity of a

system is proportional to the number of species and the number

of interactions among them. Similarly, the complexity of the gene

regulatory network is a function of the number of transcriptional

regulators and their interactions (Szathm�ary et al. 2001)

(Diagram of the chemotactic pathway in E. coli modified from

Falke et al. (1997)).

S. Chandrasekaran et al.2016
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potential to inform the evolution of other body

forms over time.

Similarly, Jones et al.’s study highlighted earlier

utilizes cutting edge technologies to bridge the axes

(Jones et al. 2020). They used an automatic behavior

monitoring system to track individual honeybees in a

colony and used convolutional neural networks (a

type of machine learning algorithm) to quantify in-

dividual behaviors. These behaviors at the organis-

mal scale were then linked to molecular scale

measurements of gene expression and gene regula-

tion for each individual bee using a gene regulatory

network model built using an information theoretic

approach called ASTRIX (Chandrasekaran et al.

2011). The authors then predicted individual behav-

iors solely based on the expression of transcription

factors using another machine-learning algorithm

called Random Forests. This study spanning multiple

axes dimensions was made possible thanks to a di-

verse team comprising entomologists, bioengineers,

genome scientists, data scientists, and

bioinformaticians.

Interaction across disciplines

In addition to all the above, we agree there are bar-

riers when bringing together all disciplines, institu-

tions, departments, programs, and even sources of

funding to deal with all the above barriers. These

barriers exist because of the differences among all

disciplines, such as language, terminology, and

definition.

It could also be because of self-imposed barriers

that limit interactions among the disciplines. Our

tendency to gravitate toward like-minded individuals

reduces cross-pollination that could bolster advances

in interdisciplinary science. These interaction barriers

also arise from academic cultural differences and

from the physical separation of different disciplines

that occurs at most institutions. In addition, differ-

ent disciplines may approach similar problems from

different perspectives, which causes a separation in

focus when different disciplines try to answer similar

questions. The agencies and sources of funding set

their priorities, while researchers are driven to dif-

ferent emphasis and goals in question.

One short-term goal that can be achieved is to

develop a general “match-making” system for help-

ing researchers identify possible collaborators with

complementary expertise (but similar research inter-

ests). Such a system would facilitate interdisciplinary

collaboration in an equitable way (e.g., less-

established scientists with fewer connections can still

identify new collaborations). Here, we propose that

Google Scholar be combined with techniques from

network science and natural language processing to

automatically generate “page ranks” of related col-

laborators to a given individual.

Another goal that can be achieved is to create

more interdisciplinary journals that are topic-

related instead of methods or discipline related.

This would allow researchers working on similar

topics across different disciplines to have a common

venue in which to publish and stay informed of

advances in their area. Another goal would be to

organize interdisciplinary research meetings/work-

shops and bring together people from different dis-

ciplines to work on similar topics.

Conclusion

Approximately three million years ago a sequence of

genetic mutations began occurring that would even-

tually lead to the evolution of humans. Those mo-

lecular level events produced an organism with

altered behaviors that over the course of millions

of years would lead to an altered global climate,

the development of novel plants, and animals (e.g.,

corn and dogs), and the destruction of others (e.g.,

the woolly mammoth and the dodo). The impact of

these mutations cannot be understood without a full

comprehension of the interplay across biological

components, factors, and scales. How do we begin

to understand these complex interdependencies?

Here we introduce the axes of life framework that

may be broadly applicable in characterizing biologi-

cal systems based on their components, scale, and

external factors acting on the system. We recom-

mend methods for data generation and integration

that span the axes of life and enable the discovery of

universal biological principles. Our proposed frame-

work and guidelines do have certain limitations. In

practice, the axes framework is limited to systems for

which a reasonable estimate of the underlying com-

ponents and system properties are available.

Similarly focusing on data generation and integration

in a few well-studied model systems might prevent

us from discovering novel biological phenomena in

exotic species.

Finally, there is one cautionary note. Great break-

throughs are rarely the result of actively trying to

make a great breakthrough. Rather, they often

come from asking questions that had not previously

been asked or choosing to look at something that no

one had looked at before. For example, the theory of

evolution was not developed because Darwin sought

to discover a rule of life; it came because his travels

exposed him to an array of observations that enabled
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him to deduce a common unifying thread. The

Special Theory of Relativity was a result of Einstein

asking himself what it would look like if he were to

run along with a beam of light. If we try too hard to

ask big questions, we may miss the smaller question

whose answer may contain a deep truth. Last but not

least, we must also question whether our current

funding paradigm provides sufficient freedom to al-

low researchers to follow their instincts, to allow

their curiosities to guide them toward discovery, in-

stead of requiring them to select problems that have

an easily sellable significance and high likelihood of

success.
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