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Filaments, rods, and beams are ubiquitous in biology and in many man-made products and 
structures. While a substantial amount of research has been done to understand the statics 
and dynamics of these long, thin objects, there remain many unanswered and unstudied 
problems related to the dynamics of bending and twisting filamentary objects. Simulating 
the general dynamics of these structures in 3D remains challenging. For example, the net 
force and torque on a free filament immersed in fluid at low Reynolds number must 
be zero. However, standard finite difference approaches will often fail to preserve the 
zero force and torque conditions. These numerical artifacts cause spurious rotations and 
translations that prohibit, or at least limit, their accuracy in simulating the dynamics of 
filaments, rods, and beams in these contexts (such as the free-swimming motion of a 
filamentary microorganism). Here we develop a finite volume discretization based on the 
Kirchoff equations that naturally guarantees the correct total integral of the forces and 
torques on filaments, rods, or beams. We then couple this discretization to resistive force 
theory to develop a stable, accurate dynamic algorithm of filament motion at low Reynolds 
number. We use a range of sample problems to highlight the utility, stability, and accuracy 
of this method. While our sample problems focus on low Reynolds number dynamics in the 
context of resistive force theory (RFT), our discretized finite volume algorithm is general 
and can be applied to inertial dynamics, immersed boundary methods, and boundary 
integral methods, as well.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Semi-flexible objects that are significantly longer in one dimension than in the other two dimensions are common 
in nature and engineering; from microfilaments defining cell structure to the beams that support buildings. Long chain 
molecules, bacteria, plant tendrils, clothing fibers, hair, eels, snakes, medical tubing, and bridge cables comprise just a small 
subset of other relevant examples. It is hardly surprising that the physical behavior of these objects has received significant 
attention for well over a century and a half, beginning with the seminal work of Kirchoff [1]. In more recent years, a 
substantial amount of work has gone into understanding the role that filamentary objects play in biology (e.g., [2–5]). For 
example, it has been found that the molecular motors that replicate our DNA generate and detect twist in the genomic 
strands [6]. Many bacteria and microorganisms propel themselves using dynamic filamentary structures, or are themselves 
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dynamic filamentary or rod-shaped objects [7]. Therefore, it is not surprising that a substantial amount of work in recent 
years has investigated various methods for handling the dynamics of filamentary objects at low Reynolds number [8–16].

In the context of microorganism motility, consider a swimming sperm. The sperm cell is composed of two parts, a head 
and a tail. In this very simple description, we can assume the head is an inanimate, roughly spheroidal blob. The tail on 
the other hand is a long, thin rod with internal motors that cause it to flex and bend [17]. The sperm cell is small, on 
order of tens of microns, and swims at speeds of around 100 μm/s [18]. The Reynolds number, a measure of the relative 
importance of inertia to resistive forces, is less than 0.1, which implies that inertia is relatively unimportant and the sum of 
the forces that act on the sperm cell is approximately equal to zero. The sperm cell’s motility is then exactly determined 
by the balance of the net thrust from the tail’s undulation and fluidic drag from the moving cell body. To accurately 
simulate sperm motions, which has recently shown how the tail’s asymmetric beating pattern leads to symmetric swimming 
trajectories [17], requires that the numerical algorithm preserve the net force and torque applied to the cell. Otherwise, if 
these quantities are not preserved, the simulation will produce artificial swimming speeds and rotations.

To highlight another aspect that our algorithm handles, it is interesting to note that many microorganism swimmers 
cannot be described as simple elastic rods or filaments. For instance, the force producing motor in the tail of the sperm 
cell, called an axoneme, consists of 11 microtubule filaments in a 9+2 arrangement that is linked together by walking 
motor proteins [19]. Spirochete bacteria, such as the bacterium that causes Lyme disease, are long, thin cells with tens of 
rotating helical filaments that wrap around the body producing traveling waves along the cell body subsequently driving 
motility [20]. Modeling these types of coupled filaments numerically requires a general approach that can go beyond linear 
elastic constitutive relationships [21]. In addition, for biopolymers and filaments that are even smaller in size than the 
sperm cell, random thermal forces can drastically influence the motion of the filament. Accurate simulation of a filament 
in the presence of these thermal forces is then important in a number of biological problems, and has become an area of 
active research [22–24].

To address these issues, we start from the Kirchoff rod equations, a general physical description of the restoring forces 
and torques generated inside long, thin objects when they are deformed. Discretizing the equations using a finite volume 
algorithm allows us to handle how forces and torques act between neighboring segments of the simulated rod, filament, or 
beam in order to exactly prescribe the net force and torque. We show here that this algorithm is accurate and stable, even 
in the presence of random forces. Numerous sample problems are used to exemplify the utility of this algorithm for a range 
of problems.

2. The dynamics of filaments at low Reynolds number

Because rods, beams, and filaments are much longer in length than they are along their cross-sectional dimensions, the 
shape of these thin objects can be primarily defined by the centerline position, which can be described by the vector r(s, t), 
where s is the arclength and t is time. We can then define a material frame by affixing an orthonormal triad (e1,e2,e3) to 
each point along the centerline, where e3 = ∂r/∂s is the tangent vector, e1 points to a line along the surface of the filament, 
and e2 = e3 × e1 (Fig. 1). As one moves along the centerline, this orthonormal frame rotates with the rotational rate given 
by the strain vector � = �1e1 + �2e2 + �3e3, such that

∂ei

∂s
= � × ei . (1)

The rotation rate of the orthonormal triad at fixed arclength is given by

∂ei

∂t
= ω × ei , (2)

where ω = ω1e1 + ω2e2 + ω3e3 is the spin vector [25].
When a rod is bent and twisted, strain in the material results in restoring forces and torques, which we denote by F and 

M, respectively. For any infinitesimal length of the rod, the restoring moment is related to the force as [26] (Fig. 1)

∂M

∂s
= −e3 × F + ρ I

(
e1 × ∂2e1

∂t2
+ e2 × ∂2e2

∂t2

)
+ mext , (3)

where ρ is the mass density of the rod, I is the moment of inertia about the tangent vector, and mext is the net external 
moment per length applied to the infinitesimal length. Newton’s 2nd law applied to this segment gives [26]

ρ A
∂2r

∂t2
= ∂F

∂s
+ fext , (4)

with A the cross-sectional area and fext the net external applied force per unit length (i.e., the body forces). Eqs. (3)-(4)
are the general form of the dynamic Kirchoff equations. For a rod or filament that is immersed in a fluid at low Reynolds 
number, the inertial terms can be ignored and the body forces and torques come from the fluid’s resistive forces and torques 
[27]. In this case, the dynamic rod equations become
2
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Fig. 1. A long, thin helical rod is decomposed into short segments; for example, one that spans from arclength position s to s + ds. (a) At each point along 
the centerline of the rod, an orthonormal triad (e1,e2,e3) is defined, where e3 is the tangent direction. The orthonormal triad rotates as one moves from 
s to s + ds. (b) Forces F and moments M act on the cross-sections. Torque balance on the segment then leads to a relationship between the derivative of 
the moment and the force, given by Eq. (3). When the filament moves in a low Reynolds fluid at velocity v, the body resistive force is proportional to that 
velocity. This diagram assumes the ratio of perpendicular to parallel drag coefficients ζ⊥/ζ‖ = 2.

∂M

∂s
= −e3 × F + ζrω3e3 + m , (5)

ζ⊥
∂r

∂t
+ (

ζ‖ − ζ⊥
)(

∂r

∂t
· e3

)
e3 = ∂F

∂s
+ f , (6)

where the drag from the fluid of viscosity η is defined from resistive force theory (RFT) [28], with ζr ∼ 4πηa2 the rotational 
drag coefficient and ζ⊥ ∼ 4πη and ζ‖ ∼ 2πη the translational drag coefficients for motion of the segment perpendicular or 
parallel to e3, respectively. The external torque and force, m and f, now do not include the resistive drag from the fluid.

Note that Eq. (6) is in the form of a conservation equation, similar to the continuity equation, which relates the changes 
in density, ρ , to the divergence of a flux J and a source term S as

∂ρ

∂t
= −∇ · J + S . (7)

It is well known that the solution of the continuity equation with finite difference schemes does not, in general, conserve 
the total mass of the system in cases where S = 0 [29]. Finite volume schemes, on the hand, explicitly enforce conservation 
of mass by directly balancing fluxes between adjacent control volumes [29]. Therefore, the form of the dynamic filament 
equations suggests that finite volume schemes may be appropriate for properly balancing the forces and moments in sim-
ulations. Although the finite volume algorithm that we develop here focuses on the discretization of moment and torque 
components of Eqs. (5)-(6), it is straightforward to extend this method to handle inertial dynamics as well. In what follows, 
we use these two equations to define the force, torque, displacement, and rotation of any rod, filament or beam in a low 
Reynolds environment.

Eq. (5) can be used to define the force in terms of the moment by taking the cross product of this equation with the 
tangent vector:

F = ∂

∂s
(e3 × M) − ∂e3

∂s
× M + e3 × m + F3e3 , (8)

where F3 is the tangential component of the force, which is defined by a constitutive relationship governing the extensibility 
of the rod. In many situations, thin rods and filaments can be considered to be inextensible. This is because the forces 
required to compress or extend a rod by a certain amount scale like the cross-sectional area, while bending forces scale like 
the square of the cross-sectional area [30].

To close the dynamic equations, a constitutive relationship is needed to relate the restoring moment to the deformation 
of the rod. Assuming linear elasticity leads to [26]

M = A1 (�1 − κ1)e1 + A2 (�2 − κ2)e2 + C (�3 − τ0)e3 , (9)

where A1 and A2 are bending moduli and C is the twist modulus. The equilibrium shape of the filament is defined by the 
preferred curvatures κ1 and κ2 and the preferred torsion τ0. It is useful to note that

�1e1 + �2e2 = e3 × ∂e3

∂s
= e3 × ∂2r

∂s2
, (10)

which allows the cross product of the tangent vector and the moment to be written as
3
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e3 × M = −A+
∂2r

∂s2
+ A− (e1e1 − e2e2) · ∂2r

∂s2
− A1κ1e2 + A2κ2e1 , (11)

where A+ = (A1 + A2)/2 and A− = (A1 − A2)/2. In addition,

∂e3

∂s
× M = −M3 (�1e1 + �2e2) + (M1�1 + M2�2)e3

= −C (�3 − τ0)

(
e3 × ∂e3

∂s

)
+ (A1 (�1 − κ1)�1 + A2 (�2 − κ2)�2)e3 , (12)

which allows us to write the force as

F = ∂

∂s
(e3 × M) + C (�3 − τ0)

(
e3 × ∂e3

∂s

)
+ F ′

3e3 + e3 × m , (13)

where

F ′
3 = F3 − A1 (�1 − κ1)�1 − A2 (�2 − κ2)�2 . (14)

3. A finite volume discretization of the forces and torques along a filament

We begin the development of our algorithm by discretizing the arclength coordinate along the centerline of the filament. 
Because we are interested in simulating incompressible filaments, we assume that the nodes are evenly spaced with grid 
spacing �s. We will use a soft constraint to enforce the incompressibility condition, which will be described later. We define 
the vector position of the filament, the orthonormal triad, the strain vector, and the restoring moment at the node locations, 
while the force is defined half way between the individual nodes (Fig. 2). We use the notation that the vector position of 
the ith node at time t is rt

i . For all of the terms in the dynamic equations, except the tangential force, we define e3 at the 
nodal positions. This can be done with a standard second-order finite difference derivative,

= (−3r1 + 4r2 − r3)

2�s
(i = 1) ,

∂r

∂s

∣∣∣∣
i
= (ri+1 − ri−1)

2�s
(2 ≤ i ≤ N − 1) ,

= (rN−2 − 4rN−1 + 3rN)

2�s
(i = N) ,

where N is the number of nodes. The tangent vector is then

e3 = 1

| ∂r
∂s |

∂r

∂s
. (15)

The spatial second derivative of r can also be computed using a second-order finite difference derivative. However, we often 
compute the first and second derivatives of r using the derivatives of the sixth-order Lagrange interpolating polynomial 
defined on a seven-node stencil about the point of interest. This choice doesn’t affect the convergence of the method but 
does improve accuracy (see Sec. 7.2). The 1 and 2 components of the strain vector are computed as

�1,i = − e2 · ∂2r

∂s2

∣∣∣∣
i
,

�2,i = e1 · ∂2r

∂s2

∣∣∣∣
i
.

To construct the finite volume discretization of the equations of motion, we integrate Eq. (6) over a control volume 
centered about each node. For the ith node, we integrate from si−1/2 to si+1/2, leading to

ζ⊥Lc

�t

[
Î +

(
ζ‖
ζ⊥

− 1

)
et

3,ie
t
3,i

]
·
(

rt+�t
i − rt

i

)
= Fi+1/2 − Fi−1/2 + �sfi , (16)

where Î is the identity matrix, and Lc is the control volume about each node, which is equal to �s for all interior nodes 
and �s/2 for the end nodes. We also define the drag matrix

D̂i = ζ⊥Lc
[
Î +

(
ζ‖ − 1

)
et

3,ie
t
3,i

]
. (17)
�t ζ⊥

4
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Fig. 2. Discretization of filament geometry, forces, and torques. We discretize the filament using a number of evenly spaced nodes with grid spacing �s. 
The vector position of the centerline, the orthonormal triad vectors, e1, e2, e3, the strain vector �, and the moment are defined at the grid points (circles), 
while the force is defined at the half grid points (diamonds). For our finite volume algorithm, we integrate over control volumes centered on the grid 
nodes, denoted by the dashed lines.

Here we have not defined at what time the force F is evaluated, as this term will be handled in a semi-implicit form that is 
described in Sec. 4. Likewise, how the force per length f should be handled depends on the functional form of that term. In 
many applications, we will use that f = 0; however, we will also show how to handle this term when it represents random 
thermal forces (see Sec. 7.4). For now, in order to simplify the exposition, we will treat f as zero.

The crux of our method lies in how we handle the forces at the half grid point in Eq. (16), especially near the boundary 
nodes. We use Eq. (8) to discretize the forces at the half-nodes:

Fi+1/2 = 1

�s

(
e3,i+1 × Mi+1 − e3,i × Mi

) − M3

(
∂r

∂s
× ∂2r

∂s2

)
i+1/2

+ F ′
3,i+1/2

(ri+1 − ri)

�s
, (18)

where we have used m = 0. Note that the last term on the right-hand side is discretized using the second-order approxi-
mation to the derivative of r at the half grid point to define the tangent vector. The first term on the right-hand side of this 
equation only depends on terms defined at the neighboring nodes. The second term is discretized as

M3

(
∂r

∂s
× ∂2r

∂s2

)
i+1/2

= 1

2

(
M3,i+1

(
∂r

∂s
× ∂2r

∂s2

)
i+1

+ M3,i

(
∂r

∂s
× ∂2r

∂s2

)
i

)
. (19)

Finally, to handle the modified tangential force F ′
3, we break it into two pieces. The first piece, −A1 (�1 − κ1)�1 −

A2 (�2 − κ2)�2, is handled in the same way as in Eq. (19), where we use the average of the values at nodes i and i + 1 to 
approximate the value at i + 1/2. The second term is F3, which is used to enforce the incompressibility of the filament via 
a soft constraint:

F3,i+1/2 = σ0�s

(
�s

|ri+1 − ri| − 1

)
, (20)

where σ0 is a force per unit length which is related to the extensibility of the filament. In our algorithm, we set the σ0
parameter in order to maintain the internodal spacing within a small range of �s. The factor of �s that multiplies σ0 gives 
the proper scaling of the compressional modulus when the grid spacing is changed. For the simulations we describe here, 
2, 000 ≤ σ0 ≤ 20, 000 was sufficient to maintain the internodal spacing within 1% of �s.

Combining all of these terms, we can rewrite the discretized dynamic equation for the filament as

D̂i ·
(

rt+�t
i − rt

i

)
= 1

�s

(
e3,i+1 × Mi+1 − 2e3,i × Mi + e3,i−1 × Mi−1

)
−1

2

(
M3,i+1

(
∂r

∂s
× ∂2r

∂s2

)
i+1

− M3,i−1

(
∂r

∂s
× ∂2r

∂s2

)
i−1

)

+F ′
3,i+1/2

(ri+1 − ri)

�s
− F ′

3,i−1/2
(ri − ri−1)

�s
. (21)

For a free filament, the moment is zero at the ends. Therefore, at nodes 1 and 2 we have

D̂1 ·
(

rt+�t
1 − rt

1

)
= 1 (

e3,2 × M2
) − 1

(
M3,2

(
∂r × ∂2r

2

) )
+ F ′

3,3/2
(r2 − r1)

, (22)

�s 2 ∂s ∂s 2 �s

5
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D̂2 ·
(

rt+�t
2 − rt

2

)
= 1

�s

(
e3,3 × M3 − 2e3,2 × M2

) − 1

2

(
M3,3

(
∂r

∂s
× ∂2r

∂s2

)
3

)

+F ′
3,5/2

(r3 − r2)

�s
− F ′

3,3/2
(r2 − r1)

�s
, (23)

with similar expressions at the N − 1 and Nth nodes.
For a filament with a prescribed moment at the ends, the boundary condition can be directly implemented into these 

equations. It is convenient to write these equations in the compact form

D̂ · (rt+�t − rt) = Ô2 · (e3 × M) − Ô1 ·
(

M3

(
∂r

∂s
× ∂2r

∂s2

))
+ F̂3 · r , (24)

by defining a modified second derivative operator,

Ô2 = 1

�s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 · · ·
0 −2 1 0 0 0 0 · · ·
0 1 −2 1 0 0 0 · · ·
0 0 1 −2 1 0 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

· · · 0 0 0 1 −2 1 0
· · · 0 0 0 0 1 −2 0
· · · 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

a modified first derivative operator,

Ô1 = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
0 −1 0 1 0 0 0 · · ·
0 0 −1 0 1 0 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

· · · 0 0 0 −1 0 1 0
· · · 0 0 0 0 −1 0 0
· · · 0 0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

and a tangential forcing operator,

F̂3 = 1

�s

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−F ′
3,3/2 F ′

3,3/2 0 0 · · ·
F ′

3,3/2 −(F ′
3,3/2 + F ′

3,5/2) F ′
3,5/2 0 · · ·

. . .
. . .

. . .

· · · 0 F ′
3,N− 3

2
−(F ′

3,N− 3
2

+ F ′
3,N− 1

2
) F ′

3,N− 1
2· · · 0 0 F ′

3,N− 1
2

−F ′
3,N− 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

These matrices are not only convenient for writing out the equations in a compact form, they are also directly used in the 
algorithm. Indeed, the Ô1 and Ô2 matrices are the most relevant and important aspect of our method: directly accounting 
for the physics of how the restoring forces and moments are distributed along the filament while automatically imposing 
the free-end boundary conditions. As an example of how these can be used, consider a linearly elastic filament with A1 =
A2 = A and κ2 = 0, which then has

e3 × M = −A
∂2r

∂s2
− Aκ1e2 = −AL̂2 · r − Aκ1e2 , (28)

where we have defined a general second derivative matrix operator L̂2 that computes an arbitrary discretization of the 
second derivative of its argument. The equation of motion can then be written as

D̂ · (rt+�t − rt) = −AÔ2 ·
(
L̂2 · r + κ1e2

)
− Ô1 ·

(
C (�3 − τ0)

(
∂r

∂s
× ∂2r

∂s2

))
+ F̂3 · r . (29)

As can be seen from this, any general constitutive relationship for the moment, in principle, can be used, and the operators 
Ô1 and Ô2 then construct the appropriate discretization of the Kirchoff equations for the moments and forces along the 
filament.
6
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It should be noted that while we have laid out the algorithm for an approximately inextensible filament with roughly 
constant �s, it is straightforward to modify the algorithm to handle extensible filaments. In order to do this, the unevenly-
spaced finite difference approximations to the first and second derivatives need to be used to define the tangent vector 
(Eq. (15)) and the second derivatives of the shape that define �1 and �2. In addition, the control volume lengths Lc will 
be variable as well as the spacing defined in the operator O2. With these alterations, extensible filament dynamics can be 
handled using our method.

4. Advancing the backbone equation in time

In describing the method that we use to time-step the equation of motion (Eq. (16)), we will assume that the filament 
is a linearly elastic rod with moment given by Eq. (9). Using Eqs. (11) and (24), we can then write the general discrete form 
of the linear elastic rod equations using a semi-implicit, backward Euler method:

D̂ · (rt+�t − rt) = −
[
Ô2 ·

(
A+Î − A−

(
et

1et
1 − et

2et
2

)) · L̂2

]
· rt+�t

−Ô2 · (A1κ1et
2 − A2κ2et

1

)
−Ô1 ·

(
C

(
�t

3 − τ0
)(

∂rt

∂s
× ∂2rt

∂s2

))
+ F̂ t

3 · rt+�t , (30)

where F̂ t
3 is the tangential force operator with the forcing terms evaluated at time t . Rewriting the time-stepping algorithm 

as a linear system of equations,

M̂ · rt+�t = D̂ · rt + Rt , (31)

with

M̂ = D̂ +
[
Ô2 ·

(
A+Î − A−

(
et

1et
1 − et

2et
2

)) · L̂2

]
− F̂ t

3 (32)

Rt = −Ô2 · (A1κ1et
2 − A2κ2et

1

) − Ô1 ·
(

C
(
�t

3 − τ0
)(

∂rt

∂s
× ∂2rt

∂s2

))
(33)

5. The dynamic algorithm for rotations of the orthonormal frame

The second important aspect of our algorithm is how we handle the rotation of the orthonormal frame. If not handled 
properly, the dynamics can produce drift in the equilibrium configuration of the filament due to a loss in correspondence 
between the twist, �3, and the orientations of e1 and e2 (this drift is especially apparent when thermal fluctuations of 
chiral filaments are considered). To solve for the dynamics of the orthonormal triad, we only need to timestep e1, as the 
orientation of e3 is determined from the backbone dynamics, e3 = 1

|∂r/∂s|
∂r
∂s , and e2 = e3 × e1. The dynamic equation for e1

comes from Eq. (2):

∂e1

∂t
= ω3e2 − ω2e3 . (34)

Using Eqs. (1),(2), and (5) it is straightforward to show that

ω2 = e1 · ∂e3

∂t
, (35)

ζrω3 = C

(
∂�3

∂s
− ∂τ0

∂s

)
+ A1κ1�2 − A2κ2�1 . (36)

Therefore, because �3 = e2 · (∂e1/∂s), we can rewrite the dynamic equation for e1 (Eq. (34)) as

∂e1

∂t
= 1

ζr

(
C

∂

∂s

(
e2 · ∂e1

∂s
− τ0

)
+ A1κ1�2 − A2κ2�1

)
e2 −

(
e1 · ∂e3

∂t

)
e3 . (37)

To timestep this equation, we decompose it into its two components and handle each one separately. First, we consider the 
e2 component and step to an intermediate value of e1 = e′ by integrating over the control volumes surrounding each node 
and using a semi-implicit backward Euler method:

Lc

�t

(
e′

i − et
1,i

) = C

ζr

((
e2 · ∂e′

∂s
− τ0

)
i+1/2

−
(

e2 · ∂e′

∂s
− τ0

)
i−1/2

)
e2,i + Lc

ζr

(
A1κ1�2,i − A2κ2�1,i

)
e2,i . (38)

The terms at the half-grid points are evaluated as
7
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(
e2 · ∂e′

∂s

)
i+1/2

≈ 1

2�s

(
e2,i+1 + e2,i

) · (e′
i+1 − e′

i

)
(39)

and Eq. (38) is then solved for e′ . To guarantee that e′ is a unit vector, it is renormalized after each time step by dividing 
by the magnitude of the vector at each grid point.

For the second part of the time stepping, we then consider the equation,

∂e′

∂t
= −

(
e′ · ∂e3

∂t

)
e3 . (40)

The integral of this equation from time t to time t + �t represents the rotation of e′ that occurs when et
3 rotates to et+�t

3 . 
Therefore, we use a rotation matrix approach to determine the value of et+�t

1 , which is the new value of e′ after the 
integration of Eq. (40):

et+�t
1 = e′ −

(
e′ · et+�t

3

)(
et

3 + et+�t
3

)
1 + et

3 · et+�t
3

. (41)

This equation guarantees that the magnitude of et+�t
1 is the same as the magnitude of e′ , and also that et+�t

1 is perpendic-
ular to et+�t

3 .

6. The full algorithm

Our full finite volume algorithm for the dynamics of filaments, rods, or beams at low Reynolds number is then as follows:

1. Initialize the backbone position of the filament r and the orientation of e1 at all grid nodes in a manner consistent with 
any boundary conditions and with e1 perpendicular to the tangent direction of the filament.

2. Repeat the following until either the maximum time or maximum number of iterations is reached:
i. Set κ1, κ2, and τ0 to their values at the current time step.

ii. Compute e3 = ∂r/∂s
|∂r/∂s| using an appropriate discretization of the first derivative. Then compute e2 = e3 × e1.

iii. Compute the components of the strain vector using Eq. (1) such that �1 = −e2 · (∂2r/∂s2
)
, �2 = e1 · (∂2r/∂s2

)
, and 

�3 = e2 · (∂e1/∂s). The second derivative of r should be computed with the corresponding approximation to the 
derivative that was used for the first derivative in the preceding step.

iv. Compute the tangential force F3 at the half grid nodes using Eq. (20).
v. Time step r using Eq. (31).

vi. Time step e1 by first solving for the intermediate value e′ , which represents the rotation of e1 into e2 using Eq. (38). 
Then rotate e′ into e3 using Eq. (41).

7. Results

We now describe the application of this algorithm to a number of test problems. For all of the test problems, our 
algorithm was implemented in MATLAB® and we ran our simulations on standard desktop or laptop computers, running 
Windows 10. Solution of the linear systems of equations was carried out with the backslash operator (which uses UMFPack 
to do a direct solution of the linear system). Most simulations took on order of tens of minutes to a couple hours to 
complete when using an Intel® Core i7-4790 3.6 GHz with 4 cores. Unless otherwise noted, all simulations assume motion 
in water, η = 10−3 Pa·s, with resistive drag coefficients ζ⊥ = 2ζ‖ = 4πη.

7.1. The shortcomings of a finite difference approach

Before we begin describing the results of our test cases, we first highlight the downfalls of a straightforward imple-
mentation of a finite difference approach using a simple model of an undulating, filamentary swimmer: a free filament 
undergoing planar traveling wave undulations, as was originally examined theoretically by Taylor [31] and has been used as 
a test case for computational methods (e.g., [32]). We consider a filament of length L = 1 with circular cross-section, such 
that A1 = A2 = 1, C = 1, and preferred curvatures and torsion κ1 = ε sin (ks − ωt) and κ2 = τ0 = 0, with ε = 8, k = 4π , 
and ω = 10. Because we are considering an integer number of wavelengths, at low Reynolds number the filament should 
translate along a straight line at constant velocity. This scenario leads to the following force per length

∂F

∂s
= −∂4r

∂s4
− ∂2 (κ1e2)

∂s2
+ ∂

∂s

(
�3

(
e3 × ∂2r

∂s2

))
+ ∂

∂s

((
F3 −

(
(�1 − κ1)�1 + �2

2

))
e3

)
. (42)

Rather than using the discretization described in Sec. 3, we instead compute the derivatives in the top line of Eq. (42) using 
sixth-order accurate, finite-difference approximations similar to the method described in [16]:
8
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∂F

∂s
= −L̂4r − L̂2 (κ1e2) + L̂1

(
�3

(
e3 × ∂2r

∂s2

))
+ ∂ F ′

3

∂s
e3 , (43)

where L̂m is the sixth-order accurate approximation to the mth derivative, with these derivatives given by

∂ f

∂s

∣∣∣∣
i
= 1

60�s
( f i+3 − 9 f i+2 + 45 f i+1 − 45 f i−1 + 9 f i−2 − f i−3) ,

∂2 f

∂s2

∣∣∣∣
i
= 1

2�s2

(
1

45
f i+3 − 3

10
f i+2 + 3 f i+1 − 49

9
f i + 3 f i−1 − 3

10
f i−2 + 1

45
f i−3

)
,

∂3 f

∂s3

∣∣∣∣
i
= 1

8�s3 (− f i+3 + 8 f i+2 − 13 f i+1 + 13 f i−1 − 8 f i−2 + f i−3) ,

∂4 f

∂s4

∣∣∣∣
i
= 1

6�s4 (− f i+3 + 12 f i+2 − 39 f i+1 + 56 f i − 39 f i−1 + 12 f i−2 − f i−3) ,

and we handle the discretization of the derivative of F ′
3 as described in Sec. 3. We also timestep e1 using the procedure 

described in Sec. 5. (How e1 is integrated in time is not overly important because the preferred curvature drives a planar 
waveform that does not induce any twist in the filament, and the orthonormal frame does not rotate about the tangent 
vector during the simulations.)

Because the finite difference derivatives do not directly impose the free boundary conditions at the ends, we impose 
these by setting the following conditions at the ends (s = 0, 1):

L̂2r = −κ1e2

e2 · ∂e1

∂s
= 0

L̂3r = −L̂1 (κ1e2)

These boundary conditions define the values of the i = 1, 2, N − 1 and N nodes and are imposed by evaluating the right-
hand side of each equation at the previous time step and using those values to set the value of the left-hand side at the 
current time step.

We ran simulations for a total time of 4.0 using 128 nodes, a time step �t = 10−5, and σ0 = 1.6 × 104. As is shown in 
Fig. 3a, over the course of the simulation the swimmer maintains a sinusoidal shape, but there are non-physical rotations 
and translations that occur. These translations and rotations are owed to the finite difference discretization not preserving 
the zero net force and torque conditions for the free swimmer. Indeed, the undulating filament ends up translating in the 
positive x direction (Fig. 3b), even though a filament undergoing sinusoidal traveling wave oscillations propagating in the 
positive x direction should translate in the negative x direction.

As a comparison, we used the same parameters in our finite volume algorithm and found that the filament undergoes 
traveling wave oscillations and swims at roughly constant speed along the negative x direction (Fig. 3c,d). In agreement with 
theoretical predictions, we found a swimming speed of ∼ 0.106. The resistive force calculation using an amplitude 2ε/k2

predicts a speed of 0.114, when ζ⊥/ζ‖ = 2, ε = 8, and ω = 10 [33]. Therefore, our finite volume algorithm provides good 
agreement with the behavior that is predicted theoretically, while the finite difference implementation is prone to fictitious 
translations and rotations, even in this simple test case.

As we have mentioned previously, the aspect of our algorithm that enforces proper balance of the forces and moments 
between segments of the filament is completely encoded within our O1 and O2 operators, with the integral of the forces 
per length along any segment (i.e., control volume) of the filament given by∫

fds = Ô2 · (e3 × M) − Ô1 ·
(

M3

(
∂r

∂s
× ∂2r

∂s2

))
+ F̂3 · r , (44)

where the moment can be defined and discretized as appropriate to the problem. Any filament dynamics algorithm that 
works with the force per length (or the integral of the force per length), can then employ our methodology. As an example, 
the immersed boundary (IB) method simulates fluid-structure interactions by smearing the integral of the force per length 
due to a filamentary object out over a nearby set of Eulerian nodes on which the fluid velocity is to be computed [34]. This 
procedure is often represented mathematically by defining the force density that the filament exerts on the fluid:

f f =
∫

−f (s, t) δc (x − r (s, t)) ds , (45)

where the integral represents the discrete smearing of the force applied from the Lagrangian filament node located at r (s, t)
onto the Eulerian grid nodes at x, and the delta function δc is a discrete representation of the Dirac delta function [34]. 
This smeared-out force density f f drives the fluid motion, and the fluid velocity is then interpolated back onto the nodes 
9
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Fig. 3. Comparison of the finite difference algorithm (a) to the results of our finite volume algorithm (c) for a filamentary, undulating swimmer driven 
by a sinusoidal traveling wave. The images show a stroboscopic montage where the coloring of the filament denotes time. The initial shape is shown in 
dark blue, and transitions to red for the last frame. The x-coordinate of the center of mass for the finite difference (b) and finite volume methods (d) are 
also shown. Both simulations use the same parameters as given in the text. (a,b) The finite difference algorithm produces fictitious forces and torques that 
cause the filament to rotate and translate in a non-physical manner, with the center of mass translating in the positive x direction, opposite of what should 
occur for filament undulations that travel in the positive direction. (c,d) The finite volume algorithm gives a steadily propagating traveling wave along the 
filament that produces a nearly constant translation in the negative x direction, as is expected. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

that define the swimmer in order to define the local velocity of the swimmer (Fig. 4). To implement our method into the IB 
method, the force in Eq. (44) can be used to define the force from a specific node in Eq. (45). To confirm that our method 
is easily implemented in the IB method, we modified the IB code provided in [35] to simulate the undulating swimmer 
defined above using our force algorithm (Eq. (44)). We ran simulations on a 64 × 64 × 64 eulerian grid where each volume 
of fluid is (2�s)3 using a time step �t = 10−4, and 41 Lagrangian nodes for the immersed swimmer. We found stable 
swimming of the undulating filament with the expected velocity field in the fluid as shown in Fig. 4 and consistent with 
what has been seen in previous IB simulations [32].

7.2. Undulating swimmer algorithm convergence rate

The free filament undulating as a traveling wave with spatiotemporally-varying preferred curvature κ1 = ε sin (ks − ωt)
also provides a means for evaluating the accuracy and stability of our finite volume algorithm. Using this scenario and the 
same parameters given in Sec. 7.1, we ran simulations for a total time t f = 1.0, varying either the grid spacing �s or the 
time step �t . We then compared simulations with grid spacings �s and �s/2 run with the same time step, by computing 
the L2-norm difference of the net displacements of the nodes between the two simulations, which was calculated as

L2
�s =

√√√√ N∑
i=1

∣∣∣(r�s
i,t f

− r�s
i,0

)
−

(
r�s/2

2i−1,t f
− r�s/2

2i−1,0

)∣∣∣2
, (46)

where N is the total number of nodes and r�s
i,t is the position of the ith node at time t for the simulation with grid spacing 

�s. This definition compares every node in the �s simulation with its corresponding node in the �s/2 simulation. For 
simulations where the time step was varied, we computed the L2-norm differences between the net displacements from 
simulations run at �t with those at �t/2. In addition to varying the grid spacing and time step, we also examined how 
changing the accuracy of the derivatives that are used in computing the moments affected the L2-norms. We compared 
using standard 2nd-order central difference derivatives to the 6th-order accurate derivatives described above. The L2-norm 
errors are given in Table 1.

We then computed the rate of convergence, m, by assuming that numerical error scaled as a power of the grid spacing 
like �sm (or as a power of the time step). Then, the spatial rate of convergence is given by
10
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Fig. 4. Snapshot from an immersed boundary simulation that uses the finite volume algorithm to define the force per length along an undulating filamentary 
swimmer immersed in a fluid, as described in the text. The simulation is carried out in 3 dimensions, with the sinusoidal swimmer moving only in the x-y
plane. Arrows represent the fluid flow on the Eulerian grid.

Table 1
The spatial and temporal L2-norm differences and rates of convergence for the undulating 
swimmer using 2nd and 6th order accurate spatial derivatives. For testing the spatial conver-
gence, we used a fixed �t = 10−6 and varied �s between 0.004 and 0.1. For the temporal 
convergence, we used a fixed �s = 0.016 and varied �t between 10−6 and 4 × 10−6. The 
listed L2

�s has �s = 0.016.

Derivative 
order

Varying �s Varying �t

L2
�s error m L2

�t m

2nd 8.93 × 10−3 1.98 7.63 × 10−5 1.00
6th 1.21 × 10−3 2.13 7.64 × 10−5 1.00

m ln 2 = ln

(
L2
�s − L2

�s/2

L2
�s/2 − L2

�s/4

)
, (47)

with an analogous expression for the temporal rate of convergence. The results for the rates of convergence are given in 
Table 1. As expected from our use of a Backward Euler scheme, we find that the temporal convergence is linear in the 
time step. In addition, we find that the spatial rate of convergence is quadratic in the grid spacing, regardless of whether 
we use 2nd-order central difference derivatives or 6th-order accurate derivatives in defining the moment. However, using 
6th-order accurate derivatives does improve the accuracy of the method by about a factor of 7. The 6th-order accurate 
derivatives probably do not alter the rate of convergence due to the fact that our discretization of the tangential forces is 
only second-order accurate.

The example above is a simple case of internal force actuation, where the spatiotemporally varying preferred curvature 
that we use could equally well be thought of as an active moment created by off-axis internal forces, similar to models 
that have been suggested for eukaryotic cilia and flagella (e.g., [36,37]). Any active moments can be implemented in our 
algorithm in the same way as is described for the term A1κ1e2 − A2κ2e1 in Eq. (30). Active forces per length can be added 
by integrating the force per length over a control volume and adding the resultant force to the right-hand side of this 
equation (similar to how we handle thermal forces, see Sec. 7.4).

7.3. Helical extension in an external flow

The previous test problem shows that our algorithm can handle the case of a free, moving rod under the action of 
internal forces. To explore a case where one end of the filament is anchored and external forces are applied from motion of 
the surrounding fluid, we consider a helix, clamped at one end with the other end free. A linear fluid flow is then applied in 
the direction parallel to the long axis of the helix, causing the helix to undergo axial extension. This test case was chosen as 
it has been previously examined experimentally [38], thereby providing data with which to further validate our algorithm.
11
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Fig. 5. Axial extension of anchored elastic helices in external fluid flows. (a) Steady state shapes of the deformed helices as the fluid flow magnitude 
is increased, with the magnitude of flow velocity increasing from top to bottom. The helix is clamped at the left end, while the right end is free. The 
parameters are as described in the text with A = 1 pN·μm and choosing a range of representative values for linear flow velocity u. (b) Axial extension 
versus the dimensionless velocity ζ‖uR2 L2/A. The relationship between the axial extension and the dimensionless velocity agrees well with the theoretical 
results Eq. (49) for small extensions, and diverges in a similar fashion as was observed experimentally in [38]. Each color represents a different bending 
modulus as represented in the figure legend (color online).

We consider a helix of length L = 5.0 μm and cross-sectional radius a = 0.1 μm, with an equilibrium radius of curvature 
R = 0.3 μm, torsion τ = 1 μm−1, curvature κ = 3 μm−1, and the helical axis initially aligned along the x axis. The left end 
of the helix is clamped in place, with an equilibrium end-to-end distance Le ≈ 1.56 μm. A fluid flow u = ux̂ is applied, and 
the simulation is run until the helix comes to a steady state configuration (determined by the point when the velocity of 
the right-end node of the helix is less than 0.01 μm

s ). To account for the applied fluid velocity u, we redefine the resistive 
force on the filament using the relative velocity of the filament with respect to the external fluid. Eq. (6) then becomes,

ζ⊥
[
Î +

(
ζ‖
ζ⊥

− 1

)
e3e3

]
·
(

∂r

∂t
− u

)
= ∂F

∂s
. (48)

We ran a number of simulations using fluid speeds u ranging from 0.3 μm
s to 1.8 μm

s in increments of 0.15 μm
s , with a 

fluid viscosity η = 0.1 Pa·s, and bending moduli A = 2
3 , 5

6 , and 1. For each simulation, we measured the steady state axial 
extension δx . As expected, increasing the fluid velocity at constant bending modulus stretches out the helix more, with the 
helix stretching most near the anchor point, while remaining helical near the free end (Fig. 5a). The shapes that we find are 
in good agreement with the shapes that were observed experimentally [38]. In addition, previous work suggests that the 
axial extension of an elastic helix in linear flow should be given by [38,39]

δx = ζ‖uR2L2

A

[
1 +O

(
R

L

)]
, (49)

where the last term is small, since it is of the order of the ratio of the helix radius to the total length of the filament. This 
equation suggests that the axial extension should scale linearly with the length parameter, ζ‖uR2L2/A. Consistent with these 
prior results, we find that for small extensions, δx does scale linearly with the length parameter, as predicted by Eq. (49), 
and at high extensions (above 1.2 μm in our simulations) the length parameter diverges as the extension approaches the 
maximal extension, L − Le , which agrees with the experimental results [38] (Fig. 5b). Likewise, we find that our axial 
extensions collapse to a single curve when plotted against the dimensionless velocity, even when the bending modulus is 
varied, as predicted theoretically.

7.4. Thermal diffusion of a helical filament

Simulation of inextensible elastic filaments undergoing random thermal motion remains an open area of research [22–
24]. For filamentary objects at the scale of microns and smaller, as are commonly encountered in biology (e.g., DNA, actin, 
microtubules, rod-shaped bacteria), random thermal forces can play a dominant role in the dynamics. Adding thermal forces 
to our algorithm is straightforward, as these forces come in as an external body force per length that act at each point 
along the filament. We can add these forces in by defining the external force per length in Eq. (6) as being a random, 
uncorrelated vector field f = ξ , with correlation function 〈ξi (s, t) ξ j

(
s′, t′)〉 = λ2δ

(
s − s′) δ

(
t − t′) δi j , where δ(s) is the Dirac 

delta function and δi j is the Kronecker delta. The value of λ2 is determined from the Stokes-Einstein relationship. Specifically, 
we decompose the thermal force per unit length into components along the orthonormal triad directions, ξ = ξ1e1 + ξ2e2 +
ξ3e3, and consider the autocorrelation of one of these components integrated over a length �s and a small time �t:
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Fig. 6. (a). Helical filament showing the relationship between the tangent vector (shown as red dashed line), helical long axis, helix angle (θ ), filament 
radius (a), and the helix radius (R). (b) Ratio of perpendicular and parallel diffusion with respect to the long axis of the helix. A toroidal filament (pitch 
angle θ = 0) has a diffusion ratio around 4/3. As θ is increased, the diffusion ratio decreases, eventually going to 1/2 as θ → π/2. These results match well 
with the theoretical prediction given in Eq. (57) (dashed line). For each value of θ , we used τ = 1 and varied the curvature as κ = cot θ . The 1st quartile, 
median, and 3rd quartiles are shown as horizontal red lines. Ten simulations were done for each value of θ .∫∫∫∫

ξi (s, t) ξi
(
s′, t′)ds′dsdtdt′ = λ2

∫∫∫∫
δ
(
s − s′) (

t − t′)ds′dsdtdt′

= λ2�s�t . (50)

Then, from the Stokes-Einstein relationship we have

λ2 = 2ζ⊥,‖kB T

�s�t
, (51)

where ζ⊥(‖) is used for forces perpendicular (parallel) to the tangent direction. Note that this implies that we can write the 
thermal force per unit length as

ξ =
√

2kB T

�s�t

[√
ζ⊥η +

(√
ζ‖ − √

ζ⊥
)

(η · e3)e3

]
, (52)

where η is a normally distributed random vector with unit variance.
In our finite volume representation (Eq. (16)), we need to consider the integral of the random force over each control 

volume, Lc , over a time step �t . Therefore, the integrated force term that goes into our algorithm is

Lc�tξ =
√

2kB T Lc�t
[√

ζ⊥η +
(√

ζ‖ − √
ζ⊥

)
(η · e3)e3

]
, (53)

which is well-behaved when �s and/or �t go to zero.
As a test of the applicability of our algorithm to problems involving this type of random forcing, we consider the diffusion 

of free helical filaments. A helix provides a good test case as it has a fixed angle between the tangent and the helical long 
axis (Fig. 6a). We can then explore how diffusion is affected as the pitch angle of the helix θ is changed, which tests the 
validity of our implementation of Eq. (53). We consider helices with pitch angles that range from π

2 (straight cylindrical 
filament) to zero (a circular filament) and quantify the ratio of the diffusion coefficient for movements perpendicular to 
the long axis of the helix relative to diffusion parallel to it. The expected value of this ratio can be derived from the n-
dimensional mean squared displacement (MSD), MSD = 2nt D where D is the Brownian diffusion coefficient and t is time. 
The tangent vector for a helix aligned with the z axis is

e3 = − cos θ

(
sin

(
s sin θ

R

)
x̂ − cos

(
s sin θ

R

)
ŷ
)

+ sin θ ẑ , (54)

where the pitch angle is θ = tan−1( τ
κ ), and the curvature and torsion of the helix are κ = cos2 θ/R and τ = sin θ cos θ/R , 

respectively. The effective drag coefficients for motions parallel and perpendicular to the z axis are then

ζz = ζ‖ sin2 θ + ζ⊥ cos2 θ , (55)

ζ ′⊥ = 1

2

[
ζ⊥

(
1 + sin2 θ

)
+ ζ‖ cos2 θ

]
. (56)

The Stokes-Einstein relation then predicts that the ratio of the diffusion coefficients for motion perpendicular to the helical 
axis relative to motion parallel to it is D = D ′⊥

D = ζz′ , which, using ζ‖
ζ

= 1
2 , is
‖ ζ⊥ ⊥

13
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D = 2 cos2 θ + sin2 θ

1 + sin2 θ + 0.5 cos2 θ
. (57)

To test this prediction, we ran simulations using a helix of total length L = 10.0 μm, with radius R = sin θ cos θ , bending 
modulus A = 1.0 pN·μm, compressibility coefficient σ0 = 2000, fluid viscosity η = 0.1 Pa·s, and thermal energy kB T =
0.004114 pN·μm. Simulations were run for a total time 1.5 s, using 500 spatial nodes, and a time step �t = 10 μs. The 
normally distributed random forces, η, were generated using random numbers produced by the MATLAB 2021a Mersenne 
Twister generator using seed numbers 1→10. We varied the pitch angle from θ = 0 to π

2 and computed the displacement 
of the center of mass for motions perpendicular and parallel to the current long axis of the helix. We used displacements 
over time intervals of dτ = 1 ms when computing the MSD. These simulations show good agreement with the expected 
result from Eq. (57) (Fig. 6b).

This method for calculating the diffusion of a helix is accurate to our predicted diffusion Eq. (57), however, if the pitch 
of the helix becomes small, the diffusive behavior of the helix changes. In these cases, using a method which allows for 
hydrodynamic interactions, such as the IB method, is more accurate. In the case where the pitch becomes very small, the 
helix will diffuse similar to a large cylinder of radius rcyl ≈ R . Although we did not implement a stochastic IB method here, 
we have included how to implement a simple case of a 2D swimmer with the IB method and our algorithm (see Fig. 4).

7.5. Buckling of an elastic filament immersed in a thermal fluid at a hyperbolic flow stagnation point

Complex fluid flows can occur in engineering and biology at the microscopic level. For instance, in a cell’s cytoplasm, 
molecular motors translating along elastic actin filaments entrain the surrounding cytoplasmic fluid. The resulting fluid flow 
can then further bend, stretch, twist, or buckle these slender cytoskeletal fibers inside the cell [40]. Recent experimental 
work sought to understand the dynamics of actin filaments in shearing flows by examining the deformations that occurred 
when actin was introduced into a hyperbolic, low Reynolds number flow [41]. In this work, it was found that thermal 
fluctuations produce a small pre-bend in the actin filaments, which then allowed the fluid flow to fully buckle the actin. In 
addition, it was found that the fluid-induced bending deformations were crucially dependent on a single parameter � that 
depended on the rate of strain of the fluid γ [40,41]:

� = 2ηγ L4

π3 A ln
(

L2

4a2e

) , (58)

where η is viscosity of the fluid, L is the length of the filament, a is the filament body radius, and e is Euler’s number.
Systems such as these provide an excellent test case of the functionality of our algorithm for situations where external 

flows and random thermal fluctuations are both at play. To test our algorithm against the experimental results, we used 
experimental results from 2 dimensional [41] and 3 dimensional studies [42,43]. To begin, we examined the 2 dimensional 
case in which we simulated a straight filament centered at a hyperbolic Stokesian flow stagnation point where the velocity 
profile is u = γ (−x, y,0) (Fig. 7), and aligned along the positive x direction, which, when γ is positive, indicates com-
pressional flow (whereas a negative value would indicate stabilizing, extensional flow). This external fluid velocity term is 
handled the same way as in Eq. (48). The filament will undergo an Euler buckling transition under these conditions as 
long as there is a transverse force also present (such as that found from stochastic thermal forces). Although the stochastic 
forces allow for the buckling to occur, our persistence lengths �p = A

kB T used in this experiment are on the order of, or 
larger than, the length of the filament. Therefore, in our simulations, any large-scale buckling dynamics observed can be 
attributed to the Stokesian flow mentioned above, not directly to thermal stochastic forces. Using this experimental setup, 
we observed the same major bending modes which follow from the eigenvalues from the Euler-Lagrange equation [41]. 
In these simulations, we include thermal forces in the x and y dimensions only in order to reduce any motion in the z
dimension. Our results (Fig. 7) compare very well with the published results [41,44], wherein a non-dimensional tip-to-tip 
length of the filament was defined P = 1 − δ

L . The minimum tip-to-tip length, δ, of the filament is reduced as � increases. 
Also, the major buckling modes which we observe in our simulations also correlate to buckling modes theoretically and 
experimentally shown at the previously reported � values [41].

Next, we examined the three dimensional case where the hyperbolic flow is still u = γ (−x, y,0) for all z dimension 
points. In this case, we include the full three dimensional thermal force, ξ , and add in an additional stochastic thermal 
moment. This stochastic thermal moment per unit length, ξm can be derived in the same fashion as Eq. (53), in which 
our resulting thermal moment is Lc�tξm = √

2kB T Lc�t
[√

ζre3
]
. Adding this to our algorithm is easiest when including it 

directly into Eq. (36) on the right hand side. We then defined an effective radius of helicity about the center of the filament, 
as in [42,43], Ref f = √

y(s)2 + z(s)2, which is evaluated between L
4 < s < 3L

4 where the buckling is most pronounced. In 

these cases, we expect the radius of buckling to follow Ref f ∝
(

ηγ
Ap

) −1
4

. Our effective non-dimensionalized radius, Ref f
L , 

versus μ̄ is defined as

μ̄ = 8πηγ L4

c A
(59)
p
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Fig. 7. 2D and 3D filament buckling caused by Stokesian flow under thermal fluctuations. a) Stroboscopic montage of a single filament undergoing buckling 
over time due to compressional flow. Time indicated by color of the filament (color online). ‘*’ indicates the time point at which filament’s opposite 
ends are closest together (representative of filament buckling under conditions such that 0 < � < 1. b) Non-dimensionalized tip to tip length versus �
Eq. (58). Our data (blue) show correlation to data from [41]. Inlays of buckled filaments show the dominant buckling mode for the � ranges indicated 
below. In 2D simulations, � was varied by adjusting the following parameters within the given ranges: A1 = A2 = 0.1-3 pN·μm, γ = 30-60 s−1, η = 1-15
cP, L = 3-4 μm, and σ = (1-5) · 103 pN·μm. c) Time sequential images of 3D filament buckling correlating to results of [42,43] which indicated helix 
formation in a hyperbolic flow. d) Combination of Chakrabarti et al.’s data and our simulation data plotting largest effective radius of the buckled helix 
versus non-dimensionalized viscosity [43]. All data show the correct correlation to Eq. (59).

where c is a constant that is defined by the geometry of the filament, c = − ln(−α2e), α is the aspect ratio, and e is euler’s 
number. Our simulations of 3D buckling under stochastic forces and hyperbolic flows (Fig. 7d) correlate well to the previous 

experimental and simulation data from Chakrabarti et al. and also match the expected scaling result, Ref f ∝
(

Ap
ηγ

) 1
4

. In the 
previous papers [42,43], a twist modulus was not utilized in the energy functional of the filament. This being the case, 
in (Fig. 7d) we also included comparative data in which our twist modulus was taken to be negligibly low in comparison 
to ξm . Our results for modifying twist modulus on a cylindrical filament which uses A1 = A2 = Ap show only very small 
changes to our slope and the absolute value for effective radius. One interesting feature is when A1 = 20A2, which describes 
a ribbon-like filament which is much more susceptible to buckling along the e2 dimension than that of e1. In this case, the 
dominant effect driving a change in effective radius will be the weaker dimension’s bend modulus. Substituting A2 for Ap

in this case is warranted, however, for ease of plotting, we did not shift the x-axis of our ribbon data. Reducing the twist 
modulus on a ribbon further reduces the effective radius of the buckling filament since there are 2 degrees of freedom 
which each have a very small modulus. The small twist and bend moduli lead to an increase propensity for our simulation 
to stop prematurely due to the filament coming into contact with itself. More regarding our finite volume algorithm and 
ribbons is included in a later section.

7.6. The twirling to whirling transition

The preceding test cases included twist of the filament, but did not directly highlight the applicability of our algorithm 
for handling the dynamics of twist. Therefore, we chose to examine a twist-driven instability to examine this functionality. 
We consider the low Reynolds number dynamics of an elastic filament that is rotated about its tangent vector from an end 
that is clamped in place. The other end of the filament is free. This problem was originally examined analytically and using 
a weakly nonlinear theory in [45], where it was found that for low rotational speeds, the filament remained straight. Then, 
at a critical rotational frequency ωc � 8.9 

(
A/ζr L2

)
, the filament buckles and begins to whirl, where the bent backbone of 

the filament rotates about the original filament direction at a speed χ � ω, while still rotating about its tangent vector 
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Fig. 8. Twirling to large amplitude whirling. Stroboscopic montage of a side (a) and end-on (b) view of the steady-state shape of the whirling filament 
when the angular twirling speed is just above onset of the instability, ω = 9A/ζr L2. As seen in previous simulations and experiments, the filament takes 
on a large amplitude whirling shape after onset of the whirling instability. The red coloring denotes the clamped end of the filament. The side (c) and 
end-on (d) views of the whirling state for a filament with a non-circular cross-section (A1 = 1, A2 = 0.05) when ω = 5A1/ζr L2 = 9.5A+/ζr L2. When the 
bending moduli are substantially different than each other, the amplitude of the steady state shape grows with the distance from onset of the instability. 
Consequently, the ribbon shape shown here does not buckle back on itself, as it does for the filament in (a,b).

at a rotational speed comparable to the turning frequency ω [45]. Simulating a weakly nonlinear theory for the filament 
dynamics, these authors found that the transition to whirling was a Hopf bifurcation and the amplitude of this whirling 
state grew like the square root of the distance from onset [45]. However, a later analysis using the immersed boundary 
method instead found that immediately above the critical turning frequency, the filament took on a large amplitude whirling 
shape, where the free end of the filament buckled back past the clamped end [46]. This large amplitude deformation was 
subsequently seen in other simulations [47] and confirmed experimentally in [48].

To simulate this system, we consider a filament of length L = 1 and radius a = 0.1 with bending and twist moduli 
A = C = 1, initially aligned with the x-axis. The filament is clamped at the left end (x = 0) with the other end free. At 
the clamped end, the filament is rotated with angular speed ω about the tangent vector, which is implemented by setting 
a boundary condition, e1 (0, t) = cosωtx̂ + sinωtŷ. We used 200 nodes, a time step �t = 10−5, and σ0 = 1.6 × 104. The 
simulations are initialized using a shape that is slightly perturbed from straight, and the simulations were run until steady 
state (typically for a total time of 5 - 10).

As predicted by the previous theory [45], we find that for values of ω ≤ 8.8/ζr initial perturbations die away exponen-
tially in time. For values of ω ≥ 9.0/ζr , the steady state shape of the filament is a large amplitude whirling shape, where 
the filament buckles back on itself and rotates at a constant angular speed about the x axis (Fig. 8a,b).

We can also use this system to explore whether our algorithm is stable when the bending moduli are not equal, A1 �= A2, 
in which case A− �= 0. For a ribbon-like filament, the bending modulus along the longer dimension is significantly larger 
than the modulus for the thin dimension. In addition, it has recently been found that there are also modest changes to 
the RFT drag coefficients [49]. We therefore set A1 = C = 1 and varied A2 from 0.05 to 1. Since the alterations to the RFT 
coefficients are small (an aspect ratio of 100 between the long-to-short ribbon dimensions leads to approximately a 17% 
variation in the RFT coefficients), we ignored the differences in drag coefficients in these simulations. We then determined 
the critical value of the turning frequency at which the straight filament became unstable. We found that the algorithm 
worked over the full range of A2 values and that the critical turning frequency is determined by the average bending 
modulus; that is, for values of ωc � 8.9A+/ζr L2, an initially straight state filament would transition to a steady state whirling 
shape. Interestingly, when the difference between A1 and A2 was large enough, we found that rather than the instability 
leading to a large amplitude whirling state, that the amplitude of the deformed steady state shape depended on the distance 
from the onset of the instability, ω − ωc , similar to what had been predicted by the weakly nonlinear theory for filaments 
with circular cross-sections [45] (Fig. 8c,d). This result suggests that the small amplitude Hopf bifurcation solution is stable 
when one of the bending moduli is greater than the other one (which also involves slower turning frequencies than when 
A1 and A2 are comparable), but that this solution is unstable to a secondary instability when A1 ∼ A2. If this is correct, 
then this secondary instability must involve higher than quadratic order terms, which would explain why the original work 
did not capture the large amplitude whirling state [45]. More work will need to be done to investigate the full details of 
this instability.
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Fig. 9. (a) Schematic of the basic model for flailing as viewed from the side and the top. A thin rod of length L is anchored at the left end and a force 
of magnitude F0 is applied at the other end in the direction of the tangent vector. (b-e) Results of the simulations of flailing filaments. (b) Stroboscopic 
montage of the flailing motions for a force F0 = 38. The filament undergoes periodic, planar flailing motions. (c) Stroboscopic montage for the flailing 
motions when F0 = 200, showing larger amplitude motions that include bends where the filament has two bends in it. A time step of �t = 10−7 was used 
for this simulation. Stroboscopic montage showing the side (d) and end-on (e) views of the filament for the case when F0 = 43.6 and a small initial twist 
perturbation has been imposed. Instead of planar flailing, the filament steadily rotates with a 3-dimensional shape. (b-e) The colors are drawn such that 
the first and last frames of the montage are colored in green, the middle time point is shown in red, and the intermediate states are yellow.

7.7. Flailing filaments

As a final test of our method, we examine the case of a filament that is clamped at one end, while a tangential force of 
magnitude F is applied at the free end of the filament (Fig. 9a). This model was originally used to examine the buckling that 
occasionally occurs in the gliding, rod-shaped bacterium Myxococcus xanthus [50,51]. The application of a compressive force 
applied at one end of the filament causes the filament to buckle when the magnitude of the force is F ≈ 37.5A/L2 [51]. 
Beyond the buckling point, the filament flails, undulating back and forth with an amplitude that depends on the magnitude 
of the force. We selected this scenario as a test case because the original work that was done to model this system could 
not stably simulate the dynamics of the vector position of the cell body using a finite difference algorithm [51]. Instead, 
the previous work simulated the curvature dynamics for 2D motions and integrated the curvature to find the bacterial cell 
shape. Therefore, this scenario provides an additional check on the stability of our algorithm for a situation that has been 
shown to be problematic.

Here we considered a rod-shaped cell of length L = 1 with bending and twist moduli A = C = 1. The rod is clamped at 
the left end with r (s = 0) = 0 and e3 (s = 0) = x̂. The filamentary cell body is initially aligned primarily along the x axis, 
with a small perturbation added so that the filament is not exactly straight,

r (s, t = 0) = sx̂ + 0.02Wk (s) ẑ , (60)

with

Wk (s) =
(

sin ks − sinh ks + (cos k + cosh k) (cos ks − cosh ks)

sin k + sinh k

)
, (61)

the kth mode solution to the biharmonic equation with a clamped boundary at s = 0 and free boundary at s = 1. We 
perturb the first order mode, k = 1.875, in our simulations. A compressional force F = F0e3 is applied at s = L, with the 
other components of the force and torque equal to zero. We used 128 nodes, a time step �t = 10−6 or 10−7 (for the largest 
values of F0), and σ0 = 2 × 104.

Consistent with the previous work, we find that for values of F0L2/A ≤ 37 that the initial perturbation dies away, 
whereas for values of F0 L2/A ≥ 38 the initial perturbation grows and the filament flails (Fig. 9b, c). The shape and dynamics 
of the flailing filament are comparable to what was previously observed.

Our simulations are fully three dimensional. When we start the simulations with a planar perturbation and zero twist, 
the dynamics maintains the planar motions that were seen with the 2D calculations reported in [51]. However, in 3D it 
is possible that the tangentially applied force at the filament end can also produce purely rotational motions that include 
twisting of the filament. To examine whether there are regions of phase space where the tangentially applied force can 
produce these types of motions, we start the filament with the same initial perturbation to the backbone shape, but also 
include a small perturbation in the twist of the filament, �3. We find that for a range of forces 40 � F0 � 100 that there is 
a stably rotating solution that is also possible. Indeed, as shown in Fig. 9d, e when a force F0 = 43.6 is used and a small 
initial twist is applied to the filament, the planar flailing solution (identified by the vertical lines in the trajectory shown in 
Fig. 9e) transition to a persistent steady rotation, reminiscent of the whirling motions described in [45].
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8. Conclusions

Here we have described a new finite volume algorithm for handling the low Reynolds number dynamics of elastic 
filaments. The major benefit of this new method is that it handles force and torque balance between subvolumes of the 
filament in an exact way, thereby guaranteeing that the total force and moment that act on the filament are correct and 
do not include numerical artifacts of the discretization (similar to how finite volume methods preserve mass conservation 
in conservative systems). The force and torque balance are handled by two matrix operators, Ô1 and Ô2. These operators 
act directly on the discretization of the moment, therefore the local force and torque balance conditions are unaffected by 
the form and method used to discretize the moment. In addition, our method for discretizing the force and moment is not 
dependent on the type of dynamics (low Reynolds number or inertial) and can be implemented in other dynamic filament 
algorithms. As we have shown above, it is straightforward to implement our operator method for defining the forces and 
moments in the immersed boundary method.

As previously mentioned, simulating filament dynamics is a highly active area of current research and many different 
algorithms to handle these types of problems have been developed in recent years [8–16]. Many of these algorithms (e.g., 
[11,13–15]) use a method similar to that proposed in [52], where the forces and moments are defined at the half-grid point. 
In these algorithms, the elastic force is determined by defining springs that act between nodes, which likely enforce proper 
force balance between neighboring segments. However, the springs that define the elastic forces act as a soft constraint 
for relating the forces to the moments, whereas our algorithm directly defines this relationship from the Kirchoff equations. 
Furthermore, these other algorithms use auxiliary orthonormal frames that are not necessarily aligned with the local tangent 
vector, and another soft constraint is used to keep the auxiliary frames roughly aligned with the tangent. The algorithm 
presented here works directly with the material orthonormal triad, which not only preserves the material frame orientation 
explicitly, but also reduces the number of variables that need to be solved for each time step. Indeed, another benefit of 
our algorithm is how we handle the twist dynamics, which are given by the motion of e1. We track the motion of this 
unit vector by decomposing the dynamics into a component along each perpendicular direction, e2 and e3. We use a semi-
implicit backward Euler method to time step the motion along e2, and then compute the rotation of this new vector into 
the tangent direction using a rotation matrix approach. This combined approach provides a stable method that maintains 
the appropriate relationship between e1 and the twist �3.

Using the simple test case of a free-swimmer that moves by propagating a sinusoidal traveling wave, we validated our 
algorithm and showed that the convergence is second order in space and first order in time. The temporal convergence 
could likely be improved by using a Crank-Nicolson scheme in place of the backward Euler time stepping method that we 
have employed.

We then showed the utility of our algorithm by examining an array of test cases. These test cases explored the ability 
of our method to handle free and constrained filaments, helical filaments, filaments in external flow fields, and the actions 
of thermal forces and twisting torques, along with combinations of these scenarios. We also showed that the algorithm 
is stable, even when the two bending moduli are vastly different. In all cases, our algorithm agreed well with previous 
simulations and experiments. In addition, we were able to show two new behaviors, the small amplitude, steady-state 
whirling of a rod with A1 � A2, and the 3D rotation of a filament acted on by a tangential force applied at its end. Therefore, 
this algorithm is broadly useful for studying a wide range of three-dimensional, low Reynolds number filament dynamic 
problems. As already mentioned, our operator approach to discretizing the forces and moments makes it straightforward to 
apply this method in an inertial context; however, this remains for future research. In addition, here we have only examined 
the application of this method to linearly elastic constitutive laws. More complex relationships between the moment and 
shape should be easily implemented, but we have not considered those situations here.
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