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Many interesting problems in cellular biophysics involve the dynamics of filamentary
elastic objects with bend and twist degrees of freedom, moving in a viscous environment.
Motivated by the mysterious macrofiber formation in B. subtilis and the rotational dy-
namics of bacterial flagella, we have sought to establish a general theoretical structure
to deal with elastic filament dynamics, analyze these equations for model systems, and
to determine the important physical parameters that set the dynamical scales for these
systems.

We first studied the novel problem of a rotationally forced elastic filament in a viscous
fluid [1] to examine the competition between twist injection, twist diffusion, and writhing
motions. Two dynamical regimes separated by a Hopf bifurcation were discovered: (i)
diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion,
or whirling.

Next, we extended elasticity theory of filaments to encompass systems, such as bacte-
rial flagella, that display competition between two helical structures of opposite chirality
[2]. A general, fully intrinsic formulation of the dynamics of bend and twist degrees of
freedom was developed using the natural frame of space curves, spanning from the inviscid
limit to the viscously-overdamped regime applicable to cellular biology.

To be able to measure the elastic properties of cell-sized objects, such as bacterial

fibers [3], we utilized an optical trapping system to study the relaxation of a single fiber



of B. subtilis which was bent and then released. By analyzing the relaxation time, the
bending modulus of the bacterial cell wall was measured to be 1.6 +£0.6 x 10~'? erg-cm.
This number is important in understanding the scales of forces and torques that are
present in macrofiber formation and motion, lending insight into the mechanism behind

these phenomena.
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ABSTRACT

Many interesting problems in cellular biophysics involve the dynamics of filamentary
elastic objects with bend and twist degrees of freedom, moving in a viscous environment.
Motivated by the mysterious macrofiber formation in B. subtilis and the rotational dy-
namics of bacterial flagella, we have sought to establish a general theoretical structure
to deal with elastic filament dynamics, analyze these equations for model systems, and
to determine the important physical parameters that set the dynamical scales for these
systems.

We first studied the novel problem of a rotationally forced elastic filament in a viscous
fluid [1] to examine the competition between twist injection, twist diffusion, and writhing
motions. Two dynamical regimes separated by a Hopf bifurcation were discovered: (i)
diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion,
or whirling.

Next, we extended elasticity theory of filaments to encompass systems, such as bacte-
rial flagella, that display competition between two helical structures of opposite chirality
[2]. A general, fully intrinsic formulation of the dynamics of bend and twist degrees of
freedom was developed using the natural frame of space curves, spanning from the inviscid
limit to the viscously-overdamped regime applicable to cellular biology.

To be able to measure the elastic properties of cell-sized objects, such as bacterial
fibers [3], we utilized an optical trapping system to study the relaxation of a single fiber
of B. subtilis which was bent and then released. By analyzing the relaxation time, the
bending modulus of the bacterial cell wall was measured to be 1.6 £0.6 x 1012 erg-cm.
This number is important in understanding the scales of forces and torques that are
present in macrofiber formation and motion, lending insight into the mechanism behind

these phenomena.
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Chapter 1

Introduction

Over three and a half billion seconds ago, Kirchhoff presented the fundamental equa-
tions for elastic rods, the basis for most subsequent theory on the statics and dynamics of
elastic filaments [4]. For at least as many years, terrestrial life forms have been engineer-
ing and generating all manner of elastic rods, one of the key structural elements of single
and multicellular life. It is likely, therefore, that biology has much to teach us about
the rich phenomena and inherent possibilities contained within the basic framework of
elasticity theory.

Filamentary objects are ubiquitous in the world of cellular biology. From DNA to
microtubules, actin to bacterial macrofibers, filamentous structures perform a wide variety
of tasks and are present at all length scales. In biology, deformations of these filaments
usually lead to interesting phenomena, such as morphological changes in DNA during
transcription or replication [5, 6, 7] or chirality flipping in bacterial flagella [8, 9, 10, 11].
Most of these deformations involve bending in which the length scale of the deformation
is much larger than the radius of the filament. Under these circumstances, it is reasonable
to treat these filaments as elastic objects. Since the biological filaments that we will be
concerned with are all found in fluids, namely water, the elastic dynamics of the filaments
must be coupled to the hydrodynamics of the fluid. This gives rise to a field of study
called elastohydrodynamics [12].

1.1 Elastohydrodynamics

To understand the dynamics of elastic objects in a viscous environment it is first neces-
sary to understand how to couple elasticity with fluid dynamics. The basic equation of

hydrodynamics is the Navier-Stokes (N-S) equation.

p(Ou+ (u-V)u) = —VP +7V?u (1.1)
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with p the mass density of the fluid, u the velocity, P the pressure, and 7 the viscosity
of the fluid. This equation balances the acceleration of the fluid with the forces that are
present and, through the viscosity term, also accounts for the stress that the fluid exerts
on itself when fluid layers slide past one another. By scaling out the dimensions of this
equation by choosing @ = u/v, ¥ = x/L, £ = tL/v, and P = PL/nv, this equation can

be shown to depend on one parameter, the Reynolds number, Re = vL/7, as
Re (pu + (u-V)u) = —VP + V?u (1.2)

where the tildes have been dropped for simplicity. The Reynolds number is a ratio between
the inertial and viscous forces in the fluid. When Re > 1, inertial effects dominate.
When Re < 1, viscous forces prevail. Since the Reynolds number is length dependent,
hydrodynamics is very different for small and large sized objects. For microscopic objects,
the viscosity of the fluid in which they live is so dominant that inertial effects can be
ignored. A swimming bacterium like E. coli in water has a length scale of 10~*cm, swims
with a velocity of 10 3cm/s, and water’s viscosity is 10~2 Poise. This gives a Reynolds
number of 107°, a realm where inertia is completely absent.

To better understand the effects of the viscous term in the N-S equation, Stokes [13]
posed two ideal problems to study these effects. These problems assumed a semi-infinite
fluid bounded by a wall (See Fig. 1.1). In Stokes first problem, SI, the wall is moved
impulsively at time ¢ = 0. For Stokes second problem, SII, the wall is oscillated at a
frequency, w. For both of these problems the velocity profile for the fluid is calculated.
The velocity is assumed to be of the form u = wu(z,t)y. Under this assumption, the

nonlinear advective piece of the N-S equation is zero and the equation simplifies to
ut(z,t) = v Ugg(x, t) (1.3)

where v = 7/p is the kinematic viscosity. The pressure term has been neglected due
to the fact that a constant pressure is a solution to the equations and it can be shown
that variations in the pressure will diffuse away at the speed of sound, which for an
incompressible fluid is infinitely fast. This equation is the diffusion equation where one
time derivative is balanced by two spatial derivatives. In both of Stokes problems, the
boundary conditions are assumed to be a no-slip condition at the wall and that the velocity

at infinity is zero. The fundamental feature of SI is that there is not a characteristic length
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Figure 1.1: Diagrammatic representation of Stokes’ problem I (SI) where a semi-infinite
fluid is bounded by a wall that is moved impulsively, and Stokes’ problem II (SII) where
the wall is oscillated.

scale that is defined by the parameters of the problem. Therefore, the velocity at any
point z and time ¢ depends on the ratio z/(vt)!/2. In SII, a characteristic length scale
can be created as £g(w) = (v/w)'/?. This determines the length over which oscillations
in the velocity profile will decay.

An elastic filament can be parameterized by the distance along its central axis, s, the
arc length. If the position of the centerline is given by r(s), the energy cost for deforming

the filament from its unstressed state can be written as:

L
E:/ K2ds (1.4)
0

where k2

= rgs - Iss 1S the curvature of the filament, and A is the material dependent
bending modulus. The elastic force per length, f, that acts on the filament is found from
this energy functional by f = —9&/0r. Taking this functional derivative leads to a force
per length,

F——4A (r45 + gas ((Tss - Tss) rs)> (1.5)

This elastic force can be coupled to the low Reynolds number hydrodynamics of the

surrounding fluid by assuming that the filament is long and thin. Through this method
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y=Y,cosut

Figure 1.2: Diagrammatic representation of EHDI where an elastic filament in a viscous
fluid is allowed to relax from a stressed state and EHDII where one end of the filament
is oscillated [12].

of matched asymptotics, called slender-body hydrodynamics [14], the force is found to be
proportional to the fluid drag by

bt -re+ ¢ (T— ) -ry =1 (1.6)

where ¢, = 4mn/(In(L/2a) + c) is the drag coefficient for motion perpendicular to the
long axis of the filament, (| = (1 /2 is the drag coefficient for motions along the tangent
vector, t = ry is the tangent vector, L is the length of the filament, a is the radius, and
¢ is a constant of order unity that depends on the shape of the body.

If we are interested in small deformations of an initially straight elastic filament, the

leading order dynamic equation that couples elasticity to viscous fluid dynamics is
CLrt ~ —AI‘45 . (17)

This equation looks and acts a lot like the diffusion equation. It is the balance of one
time derivative and four spatial derivatives and is known as a Hyperdiffusion equation,
with A/¢; = U the hyperdiffusion constant.

By analogy to Stokes’ Problems I and II, two similar problems can be defined for

elastohydrodynamics (EHD) [12]. In EHD I, an initially straight filament is held at one
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end, bent from the other end, and then allowed to relax to its unstressed state. The
relaxation in this problem is exponential with a relaxation time of 7 = L*/Dk*, where
k is a wave number that depends on the boundary conditions. If one end is clamped
(r(0) = rs(0) = 0) and the other end is free (rss(L) = r3s(L) = 0), k =~ 1.87. In EHD
II, one end of a filament is oscillated while the other end is free to move. As in SI, there

1/4  Qscillations in

is a preferred length scale for this problem given by 4(w) = (V/w)
the filament die out exponentially on this length scale much as they did in the strictly
fluid dynamical problem. The power of 1/4 comes from the four spatial derivatives (as

opposed to two in SIT) and has been verified in experiment [12].

1.2 Two Model Biological Elastic Filaments

Biology has found many uses for elastic filaments. The most well known of these is
DNA. However, due to its size, the dynamic behavior of DNA and some other biological
filaments, such as actin, is dominated by thermal fluctuations. At a larger length scale,
where thermal fluctuations can be ignored, filamentary objects are still abundant. The
bacterial flagellum, a helical filament that is rotated to provide propulsion, and bacterial
macrofibers are two systems whose dynamics can be understood through application
of elasticity and low Reynolds number hydrodynamics. The Reynolds number for a
rotating bacterial flagella is between 10 5—10~3 and for the motions observed in B.subtilis
macrofibers the range is 10~* — 1072, Understanding the dynamics of these systems can
shed light on important issues in biology, such as bacterial propulsion and the structure of
cell wall peptidoglycan in gram positive bacteria, as well as being model systems to test
and expand our knowledge of the physics of the coupling between elasticity and viscous

hydrodynamics.

1.2.1 B. subtilis Macrofibers

Bacillus subtilis is a common gram positive bacterium. Individual cells are cylindrical
in shape with a length of ~ 4pym and a diameter of ~ 0.7ym. Under certain mutations,
cells become autolysin-deficient. Autolysin is responsible for cleaving the cell wall upon
replication and allowing the parent and daughter cells to separate. In cells with these
mutations, cells replicate but fail to separate. Since the cells always grow length-wise

along the cylinder axis, growth of these mutant strains results in a long chain of inter-
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Average Doubling Average Buckling

Strain Time (min) Length (pum)
FJ7 right-handed 77.4 166.0
FJ7 left-handed 87.7 244.1
RHX left-handed 143.3 1,480.7
RHX right-handed 97.7 936.3

Table 1.1: Different Strains of B. subtilis. Data taken from [17].

connected cells, a bacterial fiber (See Fig. 1.3) [15]. Mendelson observed that growth
occurs at all points along the fiber’s length. This growth is exponential in time with a
doubling time that varies from 63 to 193 minutes depending on the strain of mutant [16,
17]. It is observed that these fibers grow to a certain length (90 - 2,800 ym) and then
they buckle and wrap around themselves like an overtwisted phone cord (See Fig. 1.3),
a shape known as a plectoneme. As this folded fiber continues to grow, it reaches a new
length at which it will once again buckle and wrap itself into a supercoiled plectoneme,
or macrofiber. The handedness of this secondary plectoneme is the same as the orig-
inal handedness of the first structure. For any fiber of the same strain, grown in the
same culture, all helical elements will be of the same handedness, and each folding cycle
maintains the initial helix hand [16]. As well, it has been shown that the number of
wrappings per length and the rate of turning of fibers as a function of their elongation
is a constant for all stages of macrofiber growth. This process continues up until a point
where the macrofiber is too stiff to fold anymore, after tens of folding cycles. At this
point, the macrofiber assumes a ball-like structure. Though the plectonemic structure is
the most common, under some growth conditions with certain strains of fibers, a helical,
or solenoidal, shape is undertaken [18].

The handedness of these plectonemic structures depend on a great many factors, such
as the strain that is used, the temperature of the surrounding fluid, pH, and the presence
of salts in the growth medium.

Temperature: The first factor that affects the macrofiber torsion is the temperature
[19]. In FJ7 strains, increasing the temperature was shown to transform right-handed
fibers into left-handed fibers. This variation in torsion is roughly linear in the tempera-
ture.

Lysozyme and Autolysin: Addition of lysozyme or crude autolysin to the growth media
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Figure 1.3: Stages in the growth and development of a bacterial macrofiber.
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causes live helical macrofibers to undergo specific “relaxation” motions [19]. Lysozyme
is an enzyme that breaks the glycan chains, or backbone, in peptidoglycan (the major
component in bacterial cell walls). After these chains are broken, the cell effectively has
no cell wall and at this point is called a protoplast. When lysozyme is added to the
growth medium, the peptidoglycan chains begin to be cleaved, causing motions where
the fibers always initially turn in a right-handed fashion. This is independent of the
initial handedness of the fibers. Therefore, left-handed fibers tend to unwind and right-
handed fibers tend to tighten up. Usually left-handed structures dissolve before becoming
completely unwound, but there are occasionally fibers that go from a left-handed state
into a right-handed state. In addition to just measuring the direction of turning of
the fibers, the rate of turning and time for total breakdown of the structure have also
been measured in the presence of lysozyme. It is observed that the rate of turning and
breakdown time are both more rapid the more left-handed a fiber initially is. Relaxation
motions appear not to be dependent on the medium in which the fiber is grown. But,
if the fibers were exposed to either inctivated lysozyme or to polylysine, no relaxation
motions were observed. This is evidence that supports that the relaxation motions are
caused by cleavage of the peptidoglycan by lysozyme.

Right and left-handed macrofibers were also introduced into media containing crude
autolysin at different pH. Two different series were examined, one with pH of 5.6 where
the glucosaminidase, cleaving of the glycan chain, activity is favored and one at pH of 8.0
where the amidase activity is favored. Lysozyme relaxation motions were only induced in
the pH of 5.6. At pH 5.6, no breakdown was observed. At pH 8.0, macrofiber breakdown
was observed where the large structure brokedown liberating lengths of cellular filaments
that retained helical shape. Macrofibers of either hand incubated at either of these pH
values, without autolysins or crude extract, did not display any of this behavior. This is
evidence that the helical shape is maintained by the glycan backbone not by the short
peptide cross-links of the petidoglycan.

Magnesium and Ammonium: Bacterial cells cannot grow in the absence of magnesium
or a nitrogen source such as ammonium. Magnesium plays a very important role in
bacterial growth and stability of the shape of the cell. It is required for the integrity of
the ribosome and membrane structure and also aids in petidoglycan synthesis. As well, it

also acts as cofactor in many biochemical reactions. Magnesium ions have been shown to
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bind to peptidoglycan and teichoic acid, as well as influencing the susceptibility of cells
to degradation by lysozyme.

Magnesium sulfate was added to different growth media with different strains of B.
Subtilis [20]. In almost every case, addition of magnesium sulfate to the growth medium
resulted in fibers twisting in a more right-handed way, and the amount of right-handedness
increased with increased magnesium concentration. It was seen that in some fiber strains
a twist inversion could be produced where the fibers would go from left to right-handed
by adding magnesium sulfate. In other strains this inversion could not be produced.

Addition of ammonium sulfate to the growth medium causes the fibers to be more
left-handed than they are when grown in the normal medium. The extent to which this
has been seen is very qualitative but in all strains observed, ammonium sulfate caused
the fibers to be more left-handed than normal. Of all the neutral salts that have been
added to the medium, ammonium sulfate is the only one that has caused a left-handed
shift in the fibers. By examination of a variety of salts, it has been determined that the
cation is the part of the salt that affects twist development of the fibers.

D-cycloserine and D-alanine: In examining C6D fibers that normally grow left-handed
[21], it has been seen that increasing the concentration of D-alanine in the growth medium
causes fibers to grow more right-handed up until 15mM concentration is reached. After
this point, with increased D-alanine concentrations, fibers grow more left-handed. D-
alanie has also been shown to just produce more right-handedness in other strains of B.
Subtilis. The second transition, where increased amounts of D-alanine produce more left-
handedness, that was found in C6D has only been observed in two other strains, RHX
11S and 2CS8.

Concentrations of D-cycloserine were examined on C6D fibers at different tempera-
tures. It was seen that right-handed fibers were converted into left-handed structures by
the addition of D-cycloserine. Left-handed C6D fibers were produced at 48 degrees Celsius
and then D-cycloserine was added and no change in the twist state was observed. When
left-handed fibers that were not as left-handed as those produced at 48 degrees Celsius
were introduced to D-cycloserine, right-handed structures were produced. When FJ7 and
A734 fibers were introduced to D-cycloserine, right-handed forms were converted to left-
handed, whereas, left-handed structures were unaffected by the presence of D-cycloserine.

When magnesium ions were added to the FJ7 medium so that the FJ7 fibers would be
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at the same degree of twist as the A734 fibers, it was observed that the degree to which
the FJ7 fibers twist changed due to D-cycloserine concentration was equivalent to that
of the A734 fibers. It was also observed in other mutants that higher D-cycloserine con-
centrations cause more left-handedness of the fiber. When two left-handed mutants, PS5
and PS6uB, were introduced to D-cycloserine concentrations, their twist was unaffected
by D-cycloserine. However, when right-handed mutants were exposed to D-cycloserine,
their twist was affected to the left-hand side.

Combinations of different factors: It has been observed that many factors governing
torsion of the bacterial fiber are additive [21]. This means that a change in the torsion
towards the left-hand side can be produced by a factor such as D-cycloserine but this shift
can then be reversed by addition of a factor that produces more right-handedness in that
strain of fiber. Experiments were done with strains C6D and FJ7. With the C6D strains,
different combinations of temperature, D-alanine, and D-cycloserine were used. It was
noticed that temperature and D-cycloserine were left-hand factors, and that D-alanine
was a right-hand factor. With the FJ7 strain, magnesium sulfate and ammonium sulfate
were used as well as temperature, D-cycloserine and D-alanine. There was good evidence
for this additive nature of the factors seen in both cases.

Through the addition of certain chemicals, such as lysozyme and autolysin, that only
affect the cell wall chemistry, Mendelson has shown that the peptidoglycan structure
in the cell wall is responsible for the supercoiling phenomena. The results reviewed
here describe some very complex and interesting dynamical behaviors that are observed
in these systems and appear to be mostly dependent on the elasticity of the cell wall
material. However, the actual mechanism behind these motions is not well understood.
Many models have been proposed that appeal to a growth induced twisting stress in
the cell wall to account for the chiral conformations that are observed. However, since
in some circumstances [19, 18] stable single filament helical structures are observed, a
more complete elastic picture, involving preferred curvature and twist, may be required
to describe these systems. Another possible mechanism driving the initial buckling could
also be due to tension induced by drag on the growing ends of the fiber'. However, as of
yet, no good working model has been able to correctly account for the dynamic behavior

that is observed. It is hoped that through the study of the dynamics of this system a

!See Appendix F
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greater insight into the structure of the cell wall can be attained. Also, this can lead
to a better understanding of the forces and mechanisms behind bacterial shape and the

relationship between growth and shape.

1.2.2 Bacterial Flagella

The bacterial flagellum is a helical filament that is rotated by a motor that is encased
within the cell wall and powered by proton influx across the inner membrane providing
a propulsive force to the cell. Some bacteria only possess one flagellum; while others,
such as F. coli, have many flagella that are isotropically distributed over the cell body.
The flagellum is made up primarily of 11 protofilaments of a single protein, flagellin. A
typical flagellum from such bacteria as E. coli or Salmonella has a diameter of 23 nm
and a length of up to 15 ym. Normally, the pitch of the helix is around 2.3 ym and
the radius of the helix is about 0.2 pym (corresponding to a curvature of 1.2 ym~! and a
torsion of 2.1 yum~!. Bacterial cells swim at speeds of 20-30 um/s along straight lines. In
multiflagellated bacteria, the flagella bundle together as the bacterium swims. Every few
seconds, the cell randomizes its direction by reversing the direction the flagellar motors
turn. This reversal lasts for about a tenth of a second and causes the flagellar bundle
to fly apart. When the motors return to their original direction, the bundle reforms and
the cell goes off in a new direction. This process of swimming for a period of time and
then randomizing orientation is called “run and tumble”. This allows for the bacterial
cell to move about in the manner of a random walk and allows the cell to sample its
environment.

Under static conditions, bacterial flagella are normally seen to exist in one state of
chirality: they possess a given pitch and radius of curvature that is roughly constant
along the length of the filament. Different species of bacteria produce flagella that have
different chirality. However, only a few different morphologies have been observed in
nature. Calladine proposed a microscopic model [22, 23] based on the packing of flagellin
in the flagellar filament that predicts 12 conformational states for flagella. So far, only
7 of these have been observed in nature (the so-called normal, curly, curly I, curly II,
coiled, semi-coiled, and straight states). It has been observed [24, 25] that when suitable
ratios of flagellin from different species are copolymerized, that flagella consisting of

two connected helices with different chirality are formed. These dual-chirality flagella
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Conformation  Pitch (um) Radius (um) Curvature (um~!) Torsion (um™7)

normal (L) 2.29 0.23 1.23 1.99
curly (R) 1.14 0.15 2.71 3.28
curly I (R) 0.93 0.16 3.33 3.08
curly II (R) 1.00 0.075 2.42 5.15
coiled (L) 0.69 0.76 1.29 0.19
semi-coiled (R) 1.24 0.26 2.44 1.85
straight 00 0 0 0

Table 1.2: Different Chiralities of Bacterial Flagella [11, 27]. (R) stands for right-handed
and (L) left-handed.

are statically stable structures. Asakura [26] noticed that, by changing the pH or ionic
strength of the solution , a normally coiled flagella could be caused to transform to a
different helicity.

Dynamical transformations between states of opposite chirality have also been ob-
served. MacNab and Ornston [8] took dark-field images of swimming Salmonella and
discovered that under right-handed torsion, when the flagellar motor was operating in
reverse, that the normally left-handed flagellar filament would flip to the right-handed
“curly” state. This transition was observed to begin at the point where the flagellum
attaches to the cell body and would then propagate distally, away from the end of the
filament connected to the body. The transition region was observed to be small: the flag-
ellar conformation was as if two helices of different pitch and radius were connected end
to end. When the motor reversed again, the flagella also flipped back to the normal state.
This type of behavior was also seen in B. subtilis and E. coli flagella. More recently, Berg
[9] found that the flagella on bacteria that were swimming close to a glass surface would
make a transition from either a right- or left-handed conformation to the straight state.
This transition also occurred starting at the proximal end of the flagella and propagated
distally. When the flagella moved far enough away from the glass surface, it was seen
that a rapid (< 100 ms) transition back to the original helical conformation propagated
from the distal end of the filament proximally.

Hotani was able to induce similar transitions by flowing fluid past stationary flagella
[11]. He removed flagella from Salmonella and found that one end would usually stick to
a glass coverslip leaving the other end free. When fluid was flowed past these filaments,

it was observed that its free portion would transform cyclically to a state of the opposite
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handedness (curly or semi-coiled). Hotani noted three phases of this transition: initiation,
growth, and travel. In the initiation and growth stages, a small portion of the flagella
at the afixed end would transform to an opposite handed chirality and the rest of the
flagellar filament would begin rotating. The region of opposite chirality would grow due
to this rotation and the normal helicity region depleted. When the right-handed region
had grown to a certain size, the point at the afixed end would flip back to the normal
state. The right-handed region would then start rotating in the opposite direction and
propagate down to the end of the filament and out, this being the travel stage. This
process of initiation, growth, and travel would repeat.

Though a great deal of work has been done studying the static conformations of elas-
tic filaments, little has been done to correctly model and analyze their three dimensional
viscous dynamics. To understand the dynamical behavior of biological filaments, such as
bacterial flagella and bacterial macrofibers, this type of analysis is required. This work
seeks to establish a general theoretical structure to deal with elastic filament dynamics,
analyze these equations for model systems, and to determine the important physical pa-
rameters that set the dynamical scales for these systems. In the second chapter, we study
the novel problem of a rotationally forced elastic filament in a viscous fluid to examine
the competition between twist injection, twist diffusion, and writhing motions. Two dy-
namical regimes separated by a Hopf bifurcation were discovered: (i) diffusion-dominated
axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. This
work was previously published in [1] and was done in collaboration with Thomas R. Pow-
ers and Raymond E. Goldstein. The third chapter extends elasticity theory of filaments
to encompass systems, such as bacterial flagella, that display competition between two
helical structures of opposite chirality. A general, fully intrinsic formulation of the dy-
namics of bend and twist degrees of freedom was developed using the natural frame of
space curves, spanning from the inviscid limit to the viscously-overdamped regime ap-
plicable to cellular biology. This fourth chapter was previously published in [2] and was
work done in collaboration with Raymond E. Goldstein, Alain Goriely, and Greg Huber.
Finally, chapter four deals with the complex motions that are observed in growing B.
subtilis macrofibers that are near a surface. The dynamics of these fibers can be used
to estimate the forces and torques that are generated in the growing cell wall. For this

system, growth seems to act as an elastic engine that drives the motions of these fibers
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in a chiral manner. To be able to measure the elastic properties of cell-sized objects and
to characterize the properties of this elastic engine, an optical trapping system is used to
study the relaxation of a single fiber of B. subtilis which was bent and then released. By
analyzing the relaxation time, the bending modulus of the bacterial cell wall was mea-
sured to be 1.6 0.6 x 1072 erg-cm. This chapter is a modified version of a paper that
was previously published as [3]. The experiments on bacterial self-propulsion were done
by Neil H. Mendelson and Joelle E. Sarlls, and the physical analysis of these motions were
done by Raymond E. Goldstein and myself. The laser tweezer experiments were done in

collaboration with Joelle E. Sarlls and Raymond E. Goldstein.
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Chapter 2

Twirling and Whirling: Viscous Dynamics of Rotating
Filaments!

Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar
motion and DNA transcription and replication, this chapter studies the overdamped
nonlinear dynamics of a rotationally forced filament with twist and bend elasticity. Com-
petition between twist injection, twist diffusion, and writhing instabilities is described
by a novel pair of coupled PDEs for twist and bend evolution. Analytical and numeri-
cal methods elucidate the twist/bend coupling and reveal two dynamical regimes sepa-
rated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii)
steady-state crankshafting motion, or whirling. The consequences of these phenomena

for self-propulsion are investigated, and experimental tests proposed.

2.1 Statement of the Problem

Dynamics and stability of rotationally forced elastic filaments arise in several important
biological settings involving bend and twist elasticity at low Reynolds number. In the
context of DNA replication, when two daughter strands are produced from a duplex, it
was noted [28] long ago that energy dissipation for rotations about the filament axis is so
much smaller than that for transverse motions that axial “speedometer-cable” motions
are favored, and are energetically and topologically feasible. During DNA transcription,
in which a polymerase protein moves down the double-stranded filament, progressive un-
winding of the helix can lead to an accumulation of local twist that may induce “writhing”
instabilities of the filament [5, 6]. Energetic and dynamical aspects of these processes are
of great current interest [7, 29].

At the cellular level, bacteria are propelled through fluids by helical flagella turned
by rotary motors in the cell wall [10]. Recent studies [30, 31] have revealed the details

! A modified version of the work that was previously published as [1].



26

of two competing crystal structures assumed by flagellin, the protein building block of
flagella, corresponding to helices of opposite chirality. Both local and distributed torques
can change the conformation of flagella; during swimming these motors episodically re-
verse direction [32], and the resultant torques can induce transformations between these
states [8], while uniform flow past a pinned flagellum may induce such chirality inversions
[11].

To elucidate fundamental processes common to these systems, we consider here the
model problem shown in Fig. 2.1: a slender elastic filament in a fluid of viscosity 7, rotated
at one end at frequency wp with the other free. We study competition between three
processes: twist injection at the rotated end, twist diffusion, and writhing. Analytical
and numerical methods reveal two dynamical regimes of motion: twirling, in which the
straight but twisted rod rotates about its centerline, and whirling, in which the centerline
of the rod writhes and crankshafts around the rotation axis in a steady state.

This work is a natural outgrowth of recent studies of forced elastica in the plane [12,
33, 34], and dynamic twist-bend coupling [35, 36, 37, 38]. The balance considered between
elastic and viscous stresses complements that between elasticity and inertia in the inviscid
limit (as in whirling shafts [39, 40]), where twist waves propagate [39, 41, 42, 43].

An elastic filament is characterized by its radius a, contour length I, bending modulus
A, and twist modulus C. The total elastic energy cost £ for curvature x and twist

density (2 is an integral over arclength s parameterizing the position r(s, t) of the filament

L
5:/ ds (émugm_zx) , (2.1)
0 2 2

centerline [39],

where the Lagrange multiplier A enforces local inextensibility, (r;)s - r¢ = 0. Thus arise
two dimensionless ratios: I' = C//A, and the aspect ratio a/L. At zero Reynolds num-
ber, elastic forces per length f = —6€/6r? balance the viscous drag from slender-body
hydrodynamics [14]:

Gt e+ (X —tt) -y =, (2.2)

where t = r; is the unit tangent, and the transverse and longitudinal drag coefficients
are (| =~ 2() =~ 4mn/[In(L/2a) + ], with c a constant of order unity [14]. Likewise, the

axial elastic torque per unit length m = CQ; [38, 39] balances the local rotational drag:

2See Appendix B
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L7 z

Y

Figure 2.1: An elastic filament, rotated about z at the left end, surrounded by a fluid of
viscosity 7.

m = (w, where w(s,t) is the local rotational velocity about t and ¢, ~ 4mwna® [14]. We
also define €2 = ¢, /(¢ L?), so € ~ (a/L), apart from logarithmic corrections.

The dynamics are closed by a geometric constraint,
Qt = ws + (_Qrs +rg X I'ss) : [rt]s ’ (23)

which shows how twist changes due to differential rates of angular rotation, stretching
(e.g., extension of a straight, twisted rod decreases 2), and out-of-plane bending motions
(writhing) [35, 37, 36, 38]. The constraint (2.3) is a conservation law for twist density
Q, with twist current —w, and with the stretching and writhing terms acting as sinks
or sources. The velocities w and r; enter (2.3) through their space derivatives, since
rigid motions cannot change 2. With the local torque balance (;w = C{2; and assuming
inextensibility we obtain .

1
Q= —Qus+—1, X1 f . 2.4
t Cr > CJ_ ( )

The second term of (2.4) is nonzero® when the filament is both out of elastic equilibrium
(f # 0) and either nonplanar (with torsion 7 # 0) or twisted (2 # 0), and then acts as a
sink or source of twist.

For boundary conditions, we assume the forced end (r(0) = 0) of the rod is clamped
(rs(0) = z) and the free end experiences no force or torque (rss(L) = rgss(L) = 0;Q(L) =

0). Local torque balance sets 25(0) = (wo/C.

2.2 Dimensional Analysis

Before solving these PDE’s numerically, we use dimensional analysis to understand the

main features of the motion. We focus on small-amplitude bend and twist deformations

3See Appendix B
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of a straight filament (thus ignoring (). Of the seven parameters (A4, C, L, a, ¢, {1, wo),
four remain after introducing I" and e and noting that a only appears through (., so
suitable rescalings of length, time, and {2 leave only one control parameter. This can be
chosen proportional to the rotation frequency wy.

For low turning rates wp, the filament remains straight, with twist diffusion and
injection balancing. The twist density at the clamped end follows from a balance of
viscous and elastic twisting torques, (wol ~ CQ, or

GrwoL
C

Q(0) ~ =Q. (2.5)

Instability occurs when the twist torque C(2 is comparable to the filament buckling torque

A/L [39]. At this point, the balance of viscous and twist torques (2.5) implies

2 2
ven 2~ (3) 22 (2) (2.6)
¢rL L n Cer L

where the second and third result follow from the relations A = (7/4)a*E between the

bending modulus and the Young’s modulus E [39] and A = kgTL,, with L, the persis-
tence length. Interestingly, w, is independent of the twist modulus C, and since the twist
density scales with the drag, w. varies inversely with (.

The result (2.6) is central, for naive dimensional analysis predicts w, ~ E/n. With
E ~ 10"dynes/cm? and 77 ~ 0.01 Poise as for rubber in water, w. would be enormous if not
for the prefactor (a/L)?. Since a/L is reasonably 103, we find w, ~ 10% s~!, similar to
flagella rotation rates [10] and achievable in the laboratory. The rightmost form in (2.6)
shows readily the frequency scales for systems of varying length and stiffness. Consider the
elastica DNA (L, ~ 5x10 % ¢cm, a ~ 107 cm), microtubules (L, ~ 0.5 cm, a ~ 10~¢ cm),
and bacterial filaments (L, ~ 25 cm, a ~ 3 X 107° cm) [44]. The frequencies kgT/(r Ly
are then 8 x 10% s71, 0.8 s71, and 1.3 x 10~° s~ !, respectively. Thus, for the instability to
appear at, say, 103 s™! requires a minimum ratio L/L, of 90, 0.03, and 10~%. A strand
of DNA with L/L, ~ 102 is clearly not straight in isolation, so this instability would be
hard to realize in DNA, but the stiffer examples of microtubules and bacterial filaments
are indeed candidates.

Linearizing (2.2) and (2.4) about a straight filament along z, with r & zZs +r,, we
see that twist diffuses with diffusion constant C'/(,, while the backbone obeys a “hyper-

diffusion” equation { r s = —Ar] s555 + CZ X (Qr4s)s. For crankshafting motions, we
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Material Ly (cm) kgT/¢ Ly (s71) (L/Lp)
DNA 5x107° 8 x 10° 90
mirotubules 0.5 0.8 0.03
bacterial filaments 25 1.3 x107° 1074

Table 2.1: Critical Twirling Lengths for Different Biological Filaments Assuming a Twirl-
to-Whirl Frequency of 103 s~1.

set r ; = xZ X r . Thus we find two characteristic lengths [12],

1 (x) = (A/¢x)"* and  £(wo) = (C/¢wo) '/ . (2.7)

These are analogous to the penetration depth in the familiar theory of oscillations in a
viscous fluid [13]. The primary instability is given by £, (w) ~ L.

The crankshafting frequency x for whirling can be estimated by assuming that the
transverse drag, (| x|ry|, is roughly equal to the elastic force per length, Alr 44| ~
Alry|/L*. Thus x ~ A/( L* ~ (a/L)?w. (C =~ A for typical materials [39]), and
Li(x) ~ £(w.) ~ L at the transition. The whirling rod does not undergo simple
rigid body rotation; the speedometer-cable rotational motion is faster than the back-
bone crankshafting motion by a factor of (L/a)?. This steady-state shape is possible
because diffusion can homogenize the twist as fast as backbone motion relieves it. We
describe this process quantitatively by integrating (2.3) along the rod for inextensible,
steady-state (€; = 0) crankshafting. The difference Aw in rotational velocities about the

local tangents at s = L and s =0 is
—Aw = x[1 —z-t(L)]. (2.8)

Equivalently, Aw is the injected twist current minus the twist current leaving the free
end. Thus, writhing acts as a twist sink in steady-state crankshafting motion when the
rod’s free end is not aligned with the z-axis.

When the twist diffusion time, (,#2 (x)/C, is longer than the bending time x71,
buckling can relieve twist faster than it is replenished by diffusion, and steady-state
crankshafting would likely be unstable. One possible new behavior would consist of
repeated sequences of transient whirling followed by quiescence as twist builds up anew.

The scaling argument above yields x ~ E /1, a factor of e~* higher than the rate at onset

of the first instability, and thus unreachable for typical materials.
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The bend relaxation time suggests the rescaling,

i=(a/¢.L") . (2.9)

A natural pair of further rescalings of (2.4) is § = s/L, and Q = QL. If we parameterize
the filament centerline (Fig. 2.1) as r(s,t) = (X(s,t),Y (s,t),s — d(s,t)), introduce the
complex transverse displacement ¢ = (X + ¢Y")/L, and expand the dynamics up to third
order in ¢ (immediately dropping the tildes), we obtain

ft = _645 - (A§5)s + [Q (éss(l - 55) + (55865)]5
-5 €6 + et + A &

r
U = St 3Gl — sl
T (060, ), o + (%00), €20 (2.10)

where the inextensibility constraint (1—¢)|/¢1)(rss - ) + (rs - fs) =~ 2(rss )+ (rs-f) =0

is expanded to set A as

(A —~ %MQ) = % (Re(€as€ls) + iTQIm(EssEL)) -

This constraint also fixes §; ~ %|§3\2. As anticipated, apart from material properties
I’ and ¢, the coupled twist/bend dynamics are governed by a single control parameter
wp, which appears only in the (rescaled) boundary condition, Q5(0) = €2wy/T' = a. The
PDEs (2.10) are like those of excitable media [45], with a separation of time scales derived
from the aspect ratio e. For the usual case € < 1, twist is the fast variable and bends are

slow.

2.3 Linearized Dynamics

The twist profile in the straight filament (¢ = 0) satisfies 2; = Q4. After transients
die out, the steady-state profile is linear in s [7], @ = ({;w/C) (s — L) . Using this in
the linearized filament evolution and taking &(s,t) = &(s)exp(ixt), a rigidly rotating,

neutrally stable shape, we obtain*

X& =145 + Taf(s — 1)&ss]s - (2.11)

4See Appendix C
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(b)

Figure 2.2: (a) Stroboscopic montage of the “whirling” filament, viewed from along the
z-axis, as it rotates clockwise; (b) side view at two times.

Numerical solution [46] of (2.11) yields a critical value o, ~ 8.9/T (confirming di-
mensional analysis of Eq. (2.9)), below which the rod is straight and executes only axial
rotation (“twirling”), and above which the rod buckles and rotates (“whirls”) at a fre-
quency which for a ~ a. is x = 2.32'a. This motion is the dynamical equivalent of the
static writhing instability of a twisted elastica [39]. Inserting all numerical factors, the
critical frequency and rotation rate (at onset) are

2 2
E
we =~ 0.563 (%) o Xe=209 (%) We - (2.12)

These solutions for w, and x are for the first linearly stable mode. There also exist
other modes that become linearly excited at higher values of the turning frequency. Inter-
estingly, when these modes were found numerically, it was seen that the growth rates and
turning frequencies for the different modes interact. It was observed that all the modes’
growth rates initially increase quadratically in the turning frequency. This can be shown
analytically by treating the twist coupling as a perturbation®. The first mode growth
rate begins negative and increases. At the critcal value of the turning frequency, it passes
through zero and continues climbing. The second mode growth rate begins more negative,
but grows faster. At a value of the turning frequency of about 1.5w., the second mode

growth rate surpasses the first mode, however, shortly before this point, the first mode

%See Appendix C
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Figure 2.3: (a) Growth rates for the first three modes of the linear equation. Mode
becomes unstable when the growth rate is positive. (b) Whirling frequencies for the first
three modes.

dips down and goes negative again. This dipping behavior is observed every time a new
mode becomes linearly stable, creating an oscillating behavior in the first mode growth
rate. It is also seen that the y values for different modes seem to attract one another. At
the point when the growth rate of one mode approaches that of another, the lower mode
x will increase sharply and the higher mode will decrease. After the two modes growth
rates have passed one another, the lower mode x decreases rapidly and the higher one
increases anew. It is believed that this behavior is related to energy level attraction and
repulsion in quantum mechanical systems such as is seen in molecular energy spectra.

This view has not yet been exploited, though.

2.4 Weakly Nonlinear Theory

Numerical solution of (2.10) with a pseudospectral method [38, 47] shows that there is
indeed a steady state beyond the bifurcation. As a — «a increases, the shape becomes
more helical. The free end of the whirling filament experiences more drag than points
closer to the driven end and thus lags behind (Fig. 2.2). Since © depends quadratically
on the backbone shape (see Eq. 2.3), near w., where £ is small, the twist density remains

nearly linear in s. Numerical studies show that the free end traces out a circle with
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R/L

(2)

Figure 2.4: (a) Amplitude R (with a square root fit) and (b) crankshafting frequency of
filament tip motion as a function of frequency offset from primary instability. (¢) and
(d); filament shapes for (w — w,)/w, = 0.27 and 3.52, with I" = 1.

1/2: a supercritical Hopf bifurcation [45]. This can be understood

radius R ~ (w — we)
from (2.8) and dimensional arguments for the displacement; [1 — z - t(L)] ~ (R/L)?,
so w(0) — w(L) ~ x(R/L)%. The twist that can be relieved by diffusion is limited, so

w(L) ~ w. From the linear dynamics, x ~ w,, leading to R ~ (wy — we)'/2.

2.5 Swimming

Chirality of the whirling filament breaks time-reversal invariance of the motion, thereby
allowing [48, 49] a net propulsive force F), along z to be generated. The elastic propulsive
force density is a total derivative, so the total force is expressible in terms of the filament
properties at its ends. For the clamped/free boundary conditions used here, F;, = —r34(0)-
z — A(0) = rgs(0) - rgs(0) — A(0). As shown in Fig. 2.5, F), rises linearly from zero near
the bifurcation, as it is quadratic in the transverse displacement, which in turn has the
supercritical form shown in Fig. 2.4(a). While we know of no organism that utilizes this
precise mechanism for self-propulsion, there is evidence for self-propulsion associated with

twist-induced whirling in growing bacterial macrofibers constrained at one end in certain
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Figure 2.5: Propulsive force generated by steady-state whirling motions, as a function of
driving frequency.

laboratory experiments [3]. Experiments are underway to explore further this possible
connection.

The possibility of observing instabilities driven by twist accumulation along an elastica
hinges upon a balance of material properties, fluid viscosity, and adequate forcing. Flow-
and rotation-induced bacterial flagellar conformational transitions [32, 8, 11] provide
proof-of-principle that this balance can be achieved in vivo. Like flagella, fibers of B.
subtilis cells have adequate material properties (e.g. Young’s modulus [44]) and aspect
ratio to display instabilities like those described here. More complex phenomena are

associated with instabilities of helical flagella, as described elsewhere [50].
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Chapter 3

Bistable Helices!

This chapter extends elasticity theory of filaments to encompass systems, such as
bacterial flagella, that display competition between two helical structures of opposite
chirality. A general, fully intrinsic formulation of the dynamics of bend and twist degrees
of freedom is developed using the natural frame of space curves, spanning from the inviscid
limit to the viscously-overdamped regime applicable to cellular biology. Aspects of front

propagation found in flagella are discussed.

3.1 Bacterial Flagellar Flipping

Over three and a half billion seconds ago, Kirchhoff presented the fundamental equations
for elastic rods, the basis for most subsequent theory on the statics and dynamics of elas-
tic filaments [4]. For at least as many years, terrestrial life forms have been engineering
and generating all manner of elastic rods, one of the key structural elements of single
and multicellular life. It is likely, therefore, that biology has much to teach us about
the rich phenomena and inherent possibilities contained within the basic framework of
elasticity theory. Here we report one such lesson, namely, the peculiar case of flip-flops of
chirality in helical, elastic filaments. The most well-known example of these transitions
occurs when the motors that turn helical bacterial flagella reverse direction, causing a
coherent bundle of nestled flagella to unbundle and the cell body to tumble [8]. Likewise,
when such flagella are placed in an external fluid flow, it is observed that regions within
the filament periodically flip to the opposite chirality, and that those flipped domains
propagate steadily downstream [11]. In quiescent fluids, flagella may display two coex-
isting chiralities (see Fig. 3.1a). Bacterial fibers [15], chains of bacterial cells formed by
repeated cell division without separation, may also display coexistence of two helix hands

(Fig. 3.1b) [18]. Another example, an order of magnitude smaller, involves two distinct

! A modified version of the work that was previously published as [2]
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conformations of DNA. Recent experiments [51, 52] indicate stretches of left-handed Z-
DNA forming spontaneously from right-handed B-DNA due to the stresses generated by
twisting during the process of transcription [53, 54, 55, 29].

We present here a simple theory of helical bistability [50, 56], treating it as competi-
tion between two states, each locally stable, but of opposite handedness [57]. This differs
fundamentally from the phenomenon of perversion, seen in vines [58], in which external
constraints produce chirality. The bistability of molecular units in bacterial flagella, first
advanced by Asakura [24] and later concretely realized as a model by Calladine [22, 23],
can be viewed as underlying the continuum approach presented below. Assuming such
an underpinning, we extend the energetic formulation of linear elasticity theory by intro-
ducing a Landau-Ginzburg functional in the twist strains [59, 60] and, building on earlier
work [62, 61, 35, 36, 37, 38, 63] develop a fully intrinsic formulation of the kinematics and
dynamics applicable to arbitrary twist-energy functionals. Finally, we describe elemen-
tary front solutions linking bistable helical states and discuss their biological significance.

The material frame of a filament is an orthonormal triad {&;, &2, &3}, where we choose
é3 along the tangent, & pointing toward an imaginary line on the rod surface, and
&, = &3 x&;. The strain vector Q(s) = (Q1, Q2, Q3) characterizes the shape of the filament
through the kinematic relation 9;&; = Q X &;, and the curvature « satisfies k? = Q2 + Q3,
with Qg the twist density. We expect the elastic energy £[Q2] to be a Landau expansion,
E =3 A0+ Bk, +- - -, where symmetry considerations dictate the allowed
elastic constants A;;, etc. [59, 60, 64]. In linear elasticity theory for an isotropic cylindrical
rod, the straight, untwisted rod minimizes the elastic energy & = (1/2) [ds (Ax? + CQ?),
where we adopt the shorthand Q = Q3. A heliz is the ground state if the minima of both
the curvature and twist energy costs are shifted from zero to intrinsic curvatures QY, 3,
and intrinsic twist Q°. Perhaps the simplest model for a bistable heliz has an energy with

a preferred curvature and two stable twist states,
A 2
E:/ds [5 ((A91)2 + (A92)2) + %Qf + V(Q)] , (3.1)

where AQ; = Q; —Q, V() is a double-well potential and the twist-gradient coefficient
controls the width of fronts connecting the two states. A most intriguing feature of such

fronts is that they correspond to helices concatenated at an angle, as in the examples of

Fig. 3.1.
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Figure 3.1: Bistable helices. (a) Flagella of Salmonella, with coexisting left- and right-
handed helices (arrows), courtes of H. Hotani. (b) Solenoidal form of B. subtilis fiber,
with coexisting helices, courtesy of M. Tilby.

How do we link such an energy functional to the filament dynamics? The arclength

kinematics of the material frame have a complementary temporal kinematics,
Btéi =w X éi (32)

with w the rotation rate. It is convenient to trade the material for a “natural” frame €

[38], and use related complex strain and rotation rates,

e = (& +ié)e” (3.3)
U = ég,s €= (—in + Qz)ew (34)
= &€= (—iwy +w)e? (3.5)

where 9(s,t) = [®ds'Q2. As they describe the filament shape and velocity, ¥ and II are
related to position and momentum variables in a “Hamiltonian” dynamics (below). (Note
that a helix of curvature s and torsion 7, having then radius R = x/(k? + 72) and pitch
p = 277 /(k?* + 72), corresponds to ¥ = kexp(i7s).) The kinematics of the natural frame

can now be written as:

063 = R(Te"), Ose = —Wé3

0es = R(Ie*),  Oe = —Ilé&3 + (¥ —w)e, (3.6)
where we again simplify the notation: w = w3. The quantities that describe completely

the configuration of an elastic filament are now ¥ and €2, representing the backbone shape

and the twist. Using the commutator, 0,0; = 050; — [€3 - r14]0s, with r the vector that

describes the filament centerline, the kinematic equations become?

Qt = Wg— Qég ‘Tt + %(\I’*H) (37)

2See Appendix G
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S
U, = I, — U8 1y, —I—i\I//ds' () . (3.8)

The successive terms in (3.7) and (3.8) describe how differential rotation rates cause strain
accumulation, the coupling with stretching, and a coupling between twisting and writhing
motions. Since F(¥*II) = (ry X rys) -1y 5, the Q equation is equivalent to that found in [1,
35]. These purely geometrical relations apply to any moving filament, regardless of the
forces that are present.

We close the equations by calculating the force and moment per length acting on
the filament. From the principle of virtual work these are functional derivatives of the
energy (3.1); the force per length is f = —¢€ /ér with variations in the rotation about the
tangent vector, dxy = &, - §&1, set to zero, while the moment per length about the tangent

is m = —6€/dx with or = 0. They are

= 0, (E) As(ve)

5Q
f = (R(®)—Ay)&s+R(e"FL) , (3.9)
with
_ _ 1 2 02
Fio= —A|0 (T —T) +5 (jU - [2°]) ¢
+i0s (g—gxp> — AT, (3.10)
where
W0 = (=i + Q9 | & =—A(T - 00)5, 0% | (3.11)

and a factor of %QQ has been absorbed into the Lagrange multiplier A. The second term
in the moment equation describes how deformations that are out of the plane of the
preferred curvature cause rotation about the tangent.

A dynamical statement is required to close the system. In a normal Newtonian de-
scription, forces and moments balance accelerations, pry; = f and m = Iw; with p a mass
per length, and I a cross-sectional moment of inertia. The dynamical equations (3.9)
are then the Kirchhoff equations for thin rods with nonlinear constitutive relationships
[41, 66, 65]. In the presence of a transverse drag coefficient ¢, an additional force (r;
appears, while the rotational drag coefficient introduces m = Iw; + (,w. This moment

equation closes the twist dynamics; the backbone dynamics are found by taking a spatial
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derivative and dotting the force equation with e,
S
p[@t—2/ds' S(UHIL) + 283 -1y | T+ (T =f, - €,

the equivalent of the momentum equation in a Hamiltonian system. The low Reynolds
number regime is attained when the mass density and moment of inertia are zero, forces
and moments are balanced by velocities and angular velocities, {r; = f and m = {;w, so
(Il = f;-e. Substituting these back into the {2 and ¥ equations, and using linear elasticity
theory to define the forces and moments, yields the viscous results found previously [38].

Remarkably, both stationary solutions and moving fronts between bistable states exist
for all bistable potentials [50, 56]. Stationary fronts exist when the potential difference
AV between the twist energy minima (see Fig. 3.2) vanishes; they connect asymptoti-
cally the two stable helical states with opposite torsion and without external mechanical
constraints. From (3.10) we see that the transverse force on the filament vanishes when
U = U0 and 6£/6Q = 0 , namely, when the curvatures have their intrinsic values and
is one of its stable states. Then U*¥ is real and the twisting moment in (3.9) vanishes.

The twist profile satisfies the Euler-Lagrange equation
Vs —V'(Q)=0. (3.12)

With the Landau model V = —(r/2)Q2% + (u/4)Q*, the solution for an infinite filament is
Q(s) = Q7 tanh(s/2¢), where QF = +(r/u)'/? and the front width is & = v/(2r)'/2. In

the natural frame, the shape is
T = QJ exp (2i€QT log cosh(s/2¢)) (3.13)

where by suitable choice of & we can set QY = 0. In real space, as s — 400, this solution
describes helices with curvature 9 and torsion QF. To see the real-space relationship
between the helices, we go to the limit £ — 0 and solve the matching problem between
one right-handed and one left-handed helix. Let the tangents to the right and left helices
make angles 6 with the two (asymptotic) helical axes z1. Continuity of the tangents at
the junction of the two axes requires that the axes be rotated about the junction by a

“block” angle a = 7 — (0 — 6_) (Figs. 3.2 and 3.3)

a=tan (1 /ky) —tan" (1 /K_), (3.14)
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their relevance for experiments, notably for flagellar systems. Our continuum approach
connects the phenomenon of bistability at the scale of nanometers [22, 23, 10, 30], with the
bistability observed at tens of microns [11, 26]; it points out, as well, the need for exper-
iments on the rates of chirality transformations under defined conditions of torques and
flows, and it provides the possibility for a new level of quantitative description bridging

the microscopic and macroscopic observations.
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Chapter 4

Experiments on B. subtilis Fibers !

Supercoiling motions that accompany the growth of bacterial macrofibers (multicel-
lular filamentous structures formed in B. subtilis by cell division without separation) are
responsible for rolling, pivoting, and walking of fibers on a surface. Fibers possess a ful-
crum about which they pivot and step in a chiral manner; forces and torques associated
with cell growth, when blocked by friction, result in self-propulsion. The elastic engine
that drives macrofiber motions generates torques estimated as micro-dyne-cm and fem-
towatts of power; optical trapping studies yield a first direct measurement of the Young’s

modulus of the bacterial cell wall, the engine’s “working fluid,” of ca. 5.0 MPa.

4.1 Basics

This chapter focuses on the discovery that supercoiling motions of growing multicellular
bacterial structures result in chiral self-propulsion when they are in contact with a solid
surface. These structures, termed macrofibers, arise by repetitive supercoiling of an elon-
gating chain of linked cells (a filament) or filament bundle that twists as it grows [15,
72]. Individual rodlike cells, 4um X 0.7pm, grow only in length, so the cell filaments,
produced in a mutant of B. subtilis by failure of cell separation after each growth and
division cycle, are of uniform diameter. They self-assemble into macrofibers millimeters
in length and tenths of millimeters in diameter [73, 16]; the mature structure consists
of a single long filament folded repeatedly upon itself and twisted into a fiber shaft that
is capped at both ends with loops. Macrofiber helix hand and degree of twist are gov-
erned by genetic and environmental factors such as temperature and the concentration
of certain ions in the growth fluid [20].

The results reported here show that the twisting and writhing dynamics underlying
supercoiling can constitute the workings of an elastic engine that powers chiral self propul-

sion. Unlike other self-propulsion systems that operate at low Reynolds numbers and are

! A modified version of the work that was previously published as [3].
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based upon periodic movement of objects with fixed underlying shape or shape sequences
[74], such as helical flagella turned by rotary motors or flexible flagella driven by local
or distributed bending moments [48, 49, 33, 34|, macrofiber motions require increase in
length. Several qualitative models have been advanced to explain the origin of twisting
and supercoiling associated with growth [73, 16, 75, 76, 18, 36, 77]. The assembly of
peptidoglycan, the strength-bearing cell wall polymer, is believed essential [75, 78, 76,
79]; but no definitive link between microscopic properties, such as the geometry of glycan
orientation in the wall or its viscoelasticity, and the filament twisting with cell elongation
has yet been established. A molecular model thus cannot yet be offered for the workings
of this macrofiber elastic engine. By characterizing its output we hope to learn more
about the ways in which it powers fiber self-assembly and other kinds of work, and also
shed light on the polymer physics of bacterial cell walls and its link to cell growth.
Supercoiling of bacterial filaments may occur with open strands, thus in the absence
of the topological constraint of fixed linking number that plays so crucial a role in the
conformation [80, 81, 82] and dynamics of DNA and other twisted filaments [35, 36, 41].
Bacterial filaments are so stiff that the thermal fluctuations important in the statistical
mechanics of DNA [83, 84] also play no role. With fiber lengths typically on the order
of 0.05 ¢cm and velocities of 2 x 1073 ¢m/s, the Reynolds number is at most O(10~2), so
these phenomena occur without inertia — purely through a balance between elastic, body,

and viscous forces.

4.2 Chiral Self-Propulsion on a Solid Surface

The macrofibers used in these studies cannot swim or swarm, and no visible flagella struc-
tures can be found on their cell walls. They are however capable of slow movement over
solid surfaces. Fibers make contact with the floor of a growth chamber because they are
slightly more dense than the growth medium in which they move. To study fiber motions
on a surface a dual-view microscope system was constructed that permits simultaneous
visualization of fiber contact with the surface and location within the chamber (Fig. 4.1).
The growth chamber was illuminated both from below and the side with two light pipes
from a single fiber optic light source (Dolan-Jenner, Inc.). Videos were made using two
CCD cameras (Cohu); one fitted to an Olympus SZ-Tr zoom stereo microscope above

the growth chamber, the other to a Bausch & Lomb monocular compound microscope
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mirror image

Figure 4.1: Tmages of macrofibers from top and side within a glass growth chamber. Scale
bar is 0.5 mm.

tube aimed horizontally. The side-view images obtained from the latter always appear as
mirror images due to reflection by the glass surface upon which the bacterial structures
rest. Images were transferred to a Phase Eight screen splitter (Vicon Industries, Inc.)
and the synchronized output sent to a GYYR time-lapse recorder (Odetics, Inc.). Motion
dynamics were measured by comparison of individual frames directly using overlays on a
video monitor screen, or following transfer to a PC using Image Pro Plus software (Media
Cybernetics).

Motions of both right, and left-handed structures were examined [85] using Bacillus
subtilis strains FJ7 and RHX [21]. Right-handed FJ7 fibers were produced by overnight
growth in 10 ml of TB [86] containing 5 x 1072M MgSO4 at 20° C. A single intact fiber
was transferred into medium of the same composition in the glass growth chamber and
the top was covered with two glass slides. For petri dish cultures, viewed only from above,
a single fiber was disrupted by toothpick transfer into medium of the same composition.
Both glass chamber and petri dish cultures were grown on a microscope stage at 24°
C. Left-handed RHX fibers were produced similarly using TB containing 5 x 1072M
(NH4)2S0y4.

Macrofibers underwent three kinds of motions as they grew on a solid surface: rolling,
pivoting, and walking. Fig. 4.2 shows that rolling is caused by twisting of a fiber about
its shaft as it elongates. If the shaft and its terminal loop lie flat on the surface, twisting
and friction result in propulsion. The terminal loop rises onto its edge then returns to

the floor upside down at a slightly displaced position. The net result is rolling in a
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Figure 4.2: Rolling sequence. Dual-view images showing motion of a macrofiber. Panels
are at times (b) 28 s., (c) 80 s., and (d) 128 seconds after (a). Scale bar is 0.5 mm.

direction determined by the handedness of helix twisting. In Fig. 4.2, the lower half of
each panel (the side view) shows the terminal loop of a right-hand fiber viewed end-on as
it rolled to the left through 270° while the loop twisted in a counterclockwise direction.
The corresponding top view images (upper half of each panel) reveal that during this
sequence the fiber shaft pivoted clockwise. Other, low-magnification films show that the
entire fiber shaft pivots in a helix-hand-specific direction (RH fibers clockwise, LH fibers
counterclockwise). Rolling and pivoting are therefore inherent properties of macrofiber
hand, not products of convection currents or other external forces.

Pivoting motions reveal that fibers possess a fulcrum midway along their length that

effectively divides them into two mechanical halves [85]. During growth each half rotates
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in a direction opposite to the other. Figure 4.3a shows rates of CW and CCW pivoting in
RH and LH structures, respectively. Figure 4.3b shows the corresponding rates of fiber
length increase during pivoting. Repetitive periodic supercoiling, required for macrofiber
morphogenesis, is responsible for the length reduction shown in Fig. 4.3b (the right-
hand structure). After each supercoiling the newly formed structure must increase its
length again before it undergoes another supercoiling and length reduction [75, 76]. A
symmetry argument can be advanced to explain the direction of fiber pivoting (Fig. 4.3c).
There are two fundamental vectors in the problem, the surface normal n about which
pivoting occurs at the fulcrum marked by a dashed line in Fig. 3c, and the helicity
vector h defining the twisting direction of the fiber. The pivoting vector p should be
composed of these; the unique choice is p = n X h, which lies in the plane pointing in
the direction that the frictional force of the surface acts to oppose the twisting motion.
The vectors p so constructed for the two fiber ends are in opposite directions, leading to
rotational motion. A composite of images taken from above (Fig. 4.3d) illustrates the
overall pivoting motion. Both rolling and walking motions of half-fibers drive pivoting.
The steps taken during walking (rectilinear motion) occur when part of a fiber rises off
the surface then returns to it elsewhere [85].

To determine the magnitude of viscous forces involved in fiber motion we model it
as a straight, rigid rod rotating at angular speed w about a pivot at one end. The force
density acting on the fiber moving with local velocity v is (v = (| ws where s is the
distance along the fiber from the pivot, (| ~ 4mn/In(L/a) is the drag coefficient for
motion perpendicular to the fiber axis [87],  the fluid viscosity, L the fiber length and a
its radius. The torque per unit length (| ws? yields a total torque 7, = {;wL?/3. Data on
two separate walking motions yield w = 0.103 rad:- s~ with L = 0.73 mm, and w = 0.029
rad- s ! with L = 1.65 mm. The corresponding torques are 1.7 x 10~ % erg and 5.4 x 10~©
erg, respectively. Both are significantly larger than gravitational torques acting on the
structures studied, estimated by the same reasoning to be 7, ~ na?6pgL?/2 ~ 6 x 1077
erg, where dp is the density difference between the fiber of radius a ~ 0.002 cm and the
surrounding fluid [88].

Continuing in this manner, we estimate the power generation by these motions to be
P = 7, w. With the values for L, w, etc. used above we find P ~ 2 x 10~'* Watts. Scaling

by the filament volume the power density is approximately 20 nW /cm?. For comparison,
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Figure 4.3: Pivoting and fiber growth. (a) uniform rotational motion of left (squares)
and right-handed (circles) fibers, and (b) their length evolution, showing several folding
events for the RH case. (c) symmetry argument for angular direction of pivoting, with n
the surface normal, h the helicity vectors (lying in the plane, along the plectoneme axis),
and p the resultant pivoting forces, also in the plane. (d) composite image from above
showing pivoting around n.

the power generated by a 1 micron spherical bacterium swimming at 10 microns/sec is

about 500 nW/cm3.

4.3 Measurement of the Bending Modulus for B. subtilis

Macrofiber self-assembly and the unique motions described here are made possible by the
elastic nature of B. subtilis cells, that is the material properties of peptidoglycan. This
is the “working fluid” of the elastic engine, undergoing repeated elongation and buckling
(supercoiling). Even its most basic material properties have not been determined in any
direct manner, although studies of large man-made aggregate structures called bacterial
thread give estimates of the Young’s modulus [89], which ultimately sets the scale for
the propulsive forces. We have determined the bending modulus of single cell filaments

from their relaxation [12] after deformation by an optical trap, constructed [90] from a
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400 mW NdYVOy diode laser (1.064 pm) (SantaFe Lasers), telescopic beam expansion,
motorized steering lenses under computer control (LabView, National Instruments), and
a Nikon Diaphot 300 inverted microscope with an oil-immersion plan-apo 100x (N.A.
1.4) objective. To increase trapping strength over that achievable with bare filaments,
2 pum diameter latex beads (Ernest F. Fullam) were attached to the filament tip after
incubation for 10 minutes in a 0.01 M solution of polylysine (Sigma) and several cycles
of rinsing. Attachment was achieved by moving a trapped bead into contact with the
filament, which was then bent by steering the trap; when the elastic restoring force of the
filament exceeded the trapping force the bead-filament assembly escaped the trap and
relaxed. Movies of the bead motion were analyzed using locally-written centroid-tracking

software based on a standard algorithm [91].
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Figure 4.4: Schematic of the setup of the optical trapping system. Note: diagram is not
drawn to scale.

The relaxation of the filament tip position h(t) is of the form hgexp(—ot), where
o = Ak*/¢,, where A is the single-filament bending modulus and k is the first allowed
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Figure 4.5: Exponential relaxation of a bead attached to a fiber tip, following displace-
ment by an optical trap. Inset shows a 2 ym bead attached to a filament.

wavenumber associated with clamped-free boundary conditions for an elastic filament
[12]2. Fig. 4.5 shows a typical relaxation curve and its fit to this functional form. From
tens of runs on filaments of lengths from 10 — 50 pm, we find A ~ (1.6 & 0.6) x 107'2
erg-cm. Assigning a persistence length by the relation A = kgT L, we find L, ~ 40 cm,
almost two orders of magnitude larger than that of microtubules [92]. Using A to estimate
the Young’s modulus under the simplifying assumption that the stiffness is determined
by the thin cell wall (with A ~ ma®tE, with ¢ ~ 25nm) we obtain E ~ 0.005 GPa, quite
similar to that of rubber and remarkably close to that found earlier [89].

This single-filament bending modulus can be compared to that inferred from the
torque estimates above on macrofibers. If we assume that the torque comes from twist
built up in the fiber, then Tiyist ~ Cm€) where Cy, is the twist elastic modulus of the
macrofiber and () the twist density at the fulcrum. To execute the given motion, the twist
must be greater than that needed to cause buckling. Elasticity theory [93] yields the result
that buckling occurs when (Cy, /A, )L =~ 10. Setting the twist torque equal to the torque
necessary to oppose viscous drag and gravity yields Cy,, ~ 7L/10 ~ 1077 erg-cm, fully
five orders of magnitude larger than the single filament bending modulus. Assuming,
as with most materials, that the bend and twist moduli are comparable, and further
invoking the expected scaling of moduli with (radius)* shows rough consistency between
the filament and fiber data. Clearly, quantitative force measurements on macrofibers

are needed, perhaps achievable using mechanical micromanipulation techniques such as

2The attached bead does change the boundary conditions some. For a better description of this effect
see Appendix K
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deflection of needles of known compliance.

The macrofiber elastic engine transduces forces derived from cell growth into motions
that accomplish three tasks: assembly of the multicellular fiber form, translational move-
ment over a surface, and the pulling together of objects attached to a fiber’s ends. The
physics upon which the macrofiber engine operates should be applicable to other biolog-
ical systems at scales ranging from molecular to multicellular dependent upon the elastic
properties of the twisting filament and the environment within which it operates. Further
measurements of forces and dynamics are clearly called for in the effort to formulate a

more complete picture of this elastic engine.
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Chapter 5

Conclusions

Through the study of a novel problem involving the forced rotational dynamics of
an elastic filament in a viscous environment, a new understanding of the geometrical
coupling between twisting and writhing motions was observed. This problem utilized a
three dimensional dynamical picture of elastohydrodynamics and showed a bifurcation
between pure axial rotation and steady state crankshafting motions brought about by
the interplay of (i) twist injection, (ii) twist diffusion, and (iii) writhing motions. For
the first time, the twist/bend coupling was shown to act as a sink or source for twist.
This new understanding can hopefully shed light on some of the interesting dynamical
problems that are encountered in the motions of growing bacterial macrofibers as well as
in the chirality inversions that are seen in bacterial flagella.

To begin to quantify the forces that are generated in growing B. subtilis bacterial
macrofibers, we studied the dynamics that occur when a fiber is brought close to a sur-
face. A number of unique chiral motions are observed: rolling, where a macrofiber rotates
about its own axis, and pivoting, where the fiber pivots and steps about a fulcrum situ-
ated roughly halfway along the length of the fiber. Both of these motions were observed
to depend on the internal chirality of the macrofiber. Through calculations based on the
drag experienced by the pivoting fiber, estimates of the power generated by the elastic
engine driven by growth were possible. To complete the picture of an elastic engine within
the cell wall, material parameters that relate to the stiffness and elasticity of the cell are
necessary. By using a laser trapping system, we were able to measure the bending mod-
ulus of a single filament of B. subtilis. Assuming that the elasticity predominantly comes
from the cell wall material, we could then estimate the Young’s modulus for the cell wall.
This was found to be around 5.0 MPa, comparable to that of rubber. These quantitative
measurements on bacterial fibers can begin to shed light on the important material pa-
rameters for this system and will hopefully lead to a way to discriminate between different

proposed models governing the mechanism behind macrofiber formation.
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Bacterial flagella are seen to exist in a number of different chiral states. However,
no theoretical models have been proposed that take into account the stability of these
secondary structures. We proposed the simplest model that can account for some of the
dynamic phenomena that are observed in bacterial flagella: bistability of the twist energy
functional. We then showed how this twist functional can be incorporated into a totally
intrinsic elastohydrodynamic model with which quantitative dimensional arguments can
be made that roughly agree with what is seen in experiments. Also, a general formalism
was established that can be used to derive intrinsic equations of motion for any filament
given the energy and a dynamical statement.

Though our work has lead to a better understanding of the viscous dynamics of bio-
logical elastic filaments and has also been the first to deal with problems involving twist
in the elastohydrodynamic context, a great deal of work, both theoretical and experi-
mental, still remains to be done. To be able to determine the true mechanism behind
the formation of bacterial macrofibers the twist modulus must still be measured. Opti-
cal trapping methods will most likely not be able to make this measurement. However,
magnetic tweezers, which utilize beads with a fixed dipole moment, are now available and
could be the perfect apparatus for measuring this value. It is also important to test the
dynamical behavior of B. subtilis as it may not be purely elastohydrodynamic. Memory
effects as new cell wall material is incorporated could lead to some of the phenomena
that are seen in experiments, expecially the “relaxation” motions that are observed when
lysozyme or autolysin are added to the growth medium. One method to test the dynamic
behavior would be to see if the relaxation time scales with the length as is predicted by
elastohydrodynamics. Some experiments have already been done to test this and show
rough agreement with what is predicted, but further experiments are still needed. To test
if there are memory or plasticity effects in the cell wall, an experiment where a fiber is
bent and held in place for a given amount of time and then released would show if the fiber
remains in its new conformation or relaxes back to its original state. Measurements of
how viscosity effects the buckling length are also necessary to determine whether twisting
stresses or growth induced tension is the predominant buckling factor.

The greatest test of the bistability model for bacterial flagella could be measurements
with imposed static forces and torques. These situations need to be explored both exper-

imentally and as well our model needs to be used to produce theoretical predictions for
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what might be seen in an experiment. Torque experiments, especially, should provide a
view as to the energy landscape for the twist potential for bacterial flagella. As well, it is
shown! that differences in the force/extension curves should deviate for a bistable helix.

A good theoretical model for plectoneme formation in B. subtilis is still lacking. Cou-
pling growth to the elastohydrodynamics involving twist could at least provide a better
way to test models for growth induced twisting stresses. With knowledge of the bending
and twisting moduli, quantitative comparisons of different models will be able to guide
research into a microscopic model for cell wall material inclusion, providing a better pic-
ture of bacterial growth and an understanding of the physics that leads to the interesting

dynamics and patterns that are seen in these fibers.

'See Appendix J
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Appendix A

Variations in 2 and the basis vectors

The shape and twist of an elastic filament can be completely described by the material
frame, an orthonormal triad {&;, &,,&3}, with &; the tangent, & a unit vector pointing
from the filament axis to a fictitious painted line on the filament surface, and éy = &3 x &;.

The rotation rate of these vectors is described by € = Q1&; + Q9&y + 3é3 with
0:8;, = Q) x 8. (A1)

With this relation, it is possible to calculate how variations in the position vector, dr,
and in the rotation angle about the tangent vector, dx = &, - §&;, affect 2 and the basis

vectors. From the above relation, it can be shown that
Q; = &;- 0,8 (A.2)
for all cyclic permutations of the indices. Variations in é; are found from
083 = org
= —(&3-(0r),)ry+ (or), (A.3)

where it has been used that §0s = 95— (&3-(dr)s). Since the basis vectors are unit vectors,
the tangential components of the variations in &; and & are set by (&;)-&; = —&;-(dé3).

The other free component is set by our definition of §y. Therefore, the variations are
6&; = (dx)& + (& - (dr),) @3 (A.4)
58 = —(0x)&1 + (&2-(dr),) & (A.5)

Using [A.2,A.3,A.4,A.5], it can be shown that variations in € are given by

0 = (0x)2 — 20 (&3 - (0r)s) — &2 - (dT)ss (A.6)
0y = —((5)()91 — 292(é3 . ((51‘)5) + é; - ((51’)55 (A?)
03 = (0x)s + (g — 23&3) - drs (A.8)

with g = Q181 + Q989 = ry X rg.
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Appendix B

Derivation of the extrinsic force and writhing terms

An elastic filament whose energy is

L
5:/ ds (ém2+gQZ—A> , (B.1)
0 2 2

with kK = (rgs- rss)% the curvature, Q = (3 the twist density, A is the Lagrange multiplier
that enforces local inextensibility, has a force per length given by f = —4€/dr. Using the

results from Appendix A, and dds = (&s - (dr)s)ds, the variation in the energy can be

written as:
5E = /OLds (Ary, - (0r)ss + CQ((0x)s + & - (6)s) — A(é3 - (61)) (B.2)

where g = 21&; + 2289 = (ry X rys) and a factor of %(CQ2 + 3Ax?) has been absorbed
into A. !

To compute the force per length, the variational derivative of the energy is taken with
respect to or, with dxy = 0. This is easily accomplished with the above result for the

variation in the energy,
f = —04s(Args) + 05 (CQ(rg X rss) — Ary)

= —Ary + C[Qrs X rg)], — Asrs — Argg (B.3)

The writhetracking piece in the  equation? is ry x rys- (f) )5, where f; = f — (f-r;)r,.
Calculating the derivative of | gives:

(fL)s = O0s[—Ary +C[Qrs X rys)], — Args + A(ry, - r5)ry]
= —Arss + C[Qss(rs X rs5) + 2Q5(rs X r35) + Q05 (rs X r3s)]
—Agrgs — Arzg + A(r5s : rs)rs + A(r4s : rss)rs + A(r4s : rs)rss
(B.4)

!Any term of the form f(s)&; - (6r)s, where f(s) is an arbitrary function, can be absorbed into the
Lagrange multiplier.
2See Appendix G
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Thus,

(rs X rss) f; = —Arsg- (rs X rss) + C[st|(rs X rss)|2 + Qs(rSS ' rss)
—Q((rss - r4s — (rss - r55)2)] — Arzs - (rs X rgy) (B.5)

Utilizing the Frenet-Serret equations

rss = ki (B.6)
fi, = —kry+7b (B.7)
b, = —7i, (B.8)

where i = ry;/k and b = ry X i, to rewrite the writhetracking piece in terms of the

curvature and the torsion, 7, leads to
(rs X rs5) - fs = —A[3k(ksT)s + 62 (Tss — T2 — K27)] + C[K(QK)ss — Qx27%] + Ax*7. (B.9)

This equation is zero unless f # 0 and the filament is either twisted (2 # 0) or bent out
of the plane (7 # 0).
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Appendix C
Linear Analysis of the Twirl-to-Whirl Instability

For the linear stability analysis we will assume that, £(s,t) = &(s)el?t2)t, Plugging

this into the linear equation turns the PDE into an ODE given by:

(0 +ix)€ = —&us +ilaf(s — 1)&ss]s (C.1)

where « is the rescaled rotational turning velocity.
This is a non-trivial equation. However, some insight into the solution can be gained

by looking at the small « limit. In the case when a = 0, this reduces to:

(0 +1x)§ = —&us (C.2)

The solution to this is just:

&(s) = ) (ansin(kns) + by cos(kns) + cp sinh(kys) + dy cosh(kns)) (C.3)

n

where a, b, ¢, d and k are constants set by the boundary conditions.

If we use the boundary conditions that relate to having the filament clamped at s =
0, and free at s = L, this corresponds to: £(0) = &5(0) = 0 and &s5(L) = &35(L) = 0. Tt
can then be calculated that:

sin(knL) — sinh(kn L)
cos(kn L) + cosh(k, L)

€= Z (an(cos(kns) — cosh(ky,s) + (sin(kys) — sinh(k,s))

N———

where the k,’s satisfy the equation:
cos(kn L) cosh(k,L) = —1 (C.5)

This implies that the growth rate for the first mode is given by o = (1.875/L)*.
If we now assume that « is small, we can treat the term iT'a((s — 1)&ss)s as a pertur-
bation and find the order « correction to the growth rate. If we think of this quantum

mechanically, we can rewrite the equation as:

(H+ V)¢ = X (C.6)
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where H = —0%, V = iad,(s0?), and A = o + ix. Since we are in the realm of small «,

V is a perturbation and we can expand A in powers of « as:
A=20 4 ax® 4 0(a?) (C.7)

Since H is hermitian, A(®) will be real. This means that x(©) = 0.

Rewriting £ as a sum over the different modes as:

£ = Zan¢n (0'8)
yields
HE = Z O'%O)Gnqsn (C.9)

If we choose to find the first order correction to the first mode, we can write £ as an

expansion in « as:

= -I-aZanan—I—O(aQ) (C.10)
n#l

And therefore, the first order correction can be found to be equal to:
MY =< |Vt > / < |y > (C.11)

Using the form for ¢ found above with L = 1, and k; = 1.875, this integral was found
to be equal to 72.3239. Therefore, x(!) = 2.32a. and o) = 0. This implies that the

growth rates, (™ to a first approximation, vary quadratically in the turning frequency.
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Appendix D

Numerical Methods for Twirling and Whirling

To analyze the dynamical behavior of an initially straight rod, immersed in a viscous
fluid, that is turned at one end with a rotational frequency of w, we need to solve a set

of coupled PDE’s that govern the position and twist of the filament. Those PDE’s are

(iry = f+ (%) (f ’ rs)rs (D'l)
C 1
Q = 5953 + ars X res- £y, (D'2)

with the force per length,’
f=—Ary + C[Q(r, x rg)], — (Ary), . (D.3)

These equations can be nondimensionalized by choosing the following rescalings:

f =r/L, Q=0QL,
§ =s/L, t=(A/C.LYt,
f =fL3/A, A=AL?*/A.

The dimensionless equations are now:

rp = f+ (CJ—C_ C') (f-rs)rs (D.4)
I

Q = 6£2Q53 +rg Xre-f, (D.5)

f = —ry+T[Qrs Xry)], — (Arg)s - (D.6)

where I' = C/A, €2 = (1 L?/(,, and the tildes have been dropped for simplicity. We
are interested in studying systems where the filament can not stretch. This restriction
implies that ry s - rs = 0. From this it can be shown that (1 —(;/¢L)(rss - f) + (rs - f) =
$(rss - f) + (rs - f) = 0, which closes the system of equations by providing a condition on

A.



62

If we are interested in the dynamics of the filament shortly after the filament buckles,
we can expand the position about the straight state by defining r(s,t) = [X (s,1),Y (s, 1), s—
d(s,t)], where the deviations X, Y, and ¢ are presumed to be small. The unitarity of
the tangent vector fixes dg ~ %(XS2 +Y?2), implying that d is a second order quantity. To

obtain the weakly nonlinear expansion of these PDE’s, we need to know
s XTgs = [X57Y;7 1- 55] X [Xssay;sa _655] (D7)

= [_Yséss - Yss(l - 55)1 Xss(l - 55) + Xs(ssSa XsYss - Y;’Xss]
(D.8)

Q

[_Ks37XSSaXsK95 - YsXss] (D.Q)

with the last line expanded to second order. By defining ¢ = (X + 7Y’), the dynamical

equations can be written out to second order as

ft - _645 - (Ags)s + [Q (gss(l - 53) + 55365)]5
- % (51555 + 6455:) + As fs

Qt = GEQQSS + %[Z (égsgss - 5555:5)
L ((255) 55 Ess + (DEss) 45 E55)] 5 (D.10)

and the inextensibility constraint sets A as
31, 2 1 £y .
(A= 5luP) =3 (Re(6ustsy) + TQTm(6unts,).

To solve these equations numerically, we chose to use a pseudospectral method [61].
This method utilizes the stability of a Fourier analysis by time stepping the linear part
of the PDE’s spectrally. The nonlinear terms are calculated from the previous timestep,
transformed and used to timestep the full equation in a spectral way. This amounts to
having the linear terms at the proper time and the nonlinear terms one time step behind.
This method allows quicker calculation time as the time step can be made larger than is
normally possible with a pure finite difference method.

The linear part of the ¢ equation is fourth order in spatial derivatives. This implies
that the proper equations to use are biharmonic functions. A complete set of equations
can be generated by combining cos, sin, cosh, and sinh terms. For the problem of a

filament rotated at one end, we assume that the boundary conditions are such that
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the rotated end is clamped (£(0) = £5(0) = 0), and the other end is free (no torques
(éss(L) = 0), no forces (£35(L) = 0)). Under these conditions the complete set of equations
is found as C.4. These functions are used to transform the nonlinear pieces spectrally.
The linear part of the €2 equation is second order in spatial derivatives. This means
that regular Fourier functions my be used to transform the equations. The boundary
conditions on €2 are found from the fact that the one end is rotated. Torque balance
at that end gives that (;wyp = CQ(0). At the free end, Q(L) = 0. This enables us to
solve the Q equation in the absence of the nonlinear terms which couple twist and bend

motions. The solution is that ) varies linearly with the arclength,
2% = (Grwo/C)(s — L) (D11)

If we define Q = QU + ), instead of solving for €2, we solve for X\. This removes the
difficulty of having to enforce the boundary condition on €25 at the rotated end. The
boundary conditions become A(0) = A(L) = 0, and sine functions are used to do the

Fourier analysis of \.
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Appendix E

U to Real Space Conversion

In this appendix, I describe the procedure that is used to transform the complex,
intrinsic ¥ representation for a space curve into the real space representation.

A curve is described by the real space vector, r, which is parameterized by the distance
along the curve, s, the arclength. The tangent vector is r,. If the tangent vector of the
curve is known, the curve can be reconstructed by assuming an arbitrary starting position,
r’, and integrating.

The curve can also be described by an intrinsic ¥ representation (See Eq. 3.4). The
function ¥ governs how the tangent, &;, and the two complex vectors normal to &3, € and

€*, evolve in space,

0,85 = R(Te), (E.1)
Oy = —Udy. (E.2)

To reconstruct the curve using this representation, these equation need to be integrated
to find the tangent vector, and then the tangent vector is integrated to give back the
curve. I will assume that the function ¥ is known. Since this representation is totally
intrinsic, all information relating to the absolute position of the filament is lacking. Re-
construction of the curve will only provide a relative positioning of the curve. However,
the actual shape will be consistent. To continue, the initial directions of the triad are set
as (€%, €0, ég), where we require that these form an orthonormal triad. These equations

are then integrated as

S
& = ég—i—/ (Urep + Vre + Uher + Uier) ds' (E.3)
0
S
€ER = eR—/ U pés ds' (E.4)
0
S
€ = 6]—/ Urés5 ds' (E.5)
0

S
€ = /0 T8y ds' (E.6)



S
& = e /0 Uey ds'

where the subscripts R and I stand for the real and imaginary parts, respectively.
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(E.7)
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Appendix F
Growth Induced Buckling

A straight growing filament will feel a spatially dependent tension along its length
due to drag as the filament extends. Since B. subtilis fibers grow exponentially in time,
the velocity at the end of the fiber will get exponentially faster. At some point, the
drag due to this velocity will create a tension great enough to buckle the filament. Using
dimensional analysis, the drag per length will be equal to (v ~ (oL, where () is the
drag coefficient for motions parallel to the long axis of the fiber, v is the velocity at the
end of the fiber, o is the growth rate, and L is the length of the fiber. Therefore, an
estimate for the magnitude of the tension in the fiber is ~ C||0L2. Setting this equal to
the force required to buckle the filament, A/L? gives the bending modulus, A, for which
a fiber of length, L and growth rate o will buckle.

A=(oL? (F.1)

For FJ7 right-handed structures, with a growth rate of 1.5 x 10~*s and a buckling length
of 1.7 x 10~2cm, this gives a bending modulus of 1.3 x 10~ 3erg-cm, a factor of 10 off
from what was found experimentally, but close enough to warrant a better analysis.

The equation of motion is
C||££ v+ (I— f?f:) -1y =1, (F.2)

and to linear order f = —Ary;—0;(Ar;), where A is a Lagrange multiplier that enforces the
growth condition. Since the fiber is growing exponentially along its long axis, r; = osrg,
where s = sge? is the arclength. Combining this equation with the dynamical equation

sets the derivative of the Lagrange multiplier as
As = —(os (F.3)

where it is assumed that s = 0 is the middle of the filament. Since the ends of the

filament are considered to be free, there can be no force at the ends. This implies that
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the boundary conditions are that A at the ends is zero, and therefore, A = %C”a(iLQ —s2).
The linear dynamical equation for displacements perpendicular to the growing fiber axis

can now be written as:
1 1, 9
CJ_.'Et = —A.’E4S — §C||O' ZL — 8 Tss (F4)

with x the displacement perpendicular to the original fiber axis. By rescaling the arclength

by the length, § = s/L, and the time as { = At/L* gives
1
Ty = —Tas — Q (ZL2 — 32) Tgs (F.5)

where a = C||0L4 /2A is the one control parameter. This equation can be solved numer-
ically to find the value of & where a perturbation goes unstable. This was found to be

a = 93.0. This gives that the buckling length for B. subtilis is

L, = <@> ' (F.6)
Gjo

with A ~ 10~ 2erg-cm, q ~ 102erg-cm™2, and o ~ 107%, this gives Ly = 0.1cm. Though
this number is a factor of 10 high for FJ7 fibers it is comparable to the buckling length
for RHX. Therefore, it may not be the main driving force of buckling, but probably plays

a significant role.
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Derivation of the Dynamic Equations for ¥ and (2

68

The material frame basis vectors can vary in both space and time. The equations

governing this motion is

aséi = OQx éi

8téi = w X €

(G.1)
(G.2)

where € is the previously defined spatial rotation rate of the the basis vectors (See eg.

Appendix A), and w is describes the rotation of the basis in time, and, therefore, acts

like and angular velocity. If we switch to our complex notation, € = (&; + ié3)e®, these

two equations can be written as

0s85 = R(Te"), Ose = —Wé3

Btég = %(HG*) , 8te = —Hég + ’L(’l9t - w) ,

where w = w3 has been used to simplify the notation.

(G.3)

The commutator, [0y, 0s] = 0:0s — 0,0, = —(&3 + r.5)0s), can be used to show that

[615788]6 = _(é3'rt,s)€s

= (ég . I‘t,s)\I/ég .
Looking at the e components from this commutator,
—UII* = —IIU* + 20, (9 — w)
Therefore,
S
(9 — w) = / S(TTT*)ds'

and

S
Ohe = —TIés + ie / S(ITT*)ds’

(G.4)
(G.5)
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Using the definitions for ¥ and €2,

= TIg-€ (G.9)
= &y - 061, (G.10)
it is possible to write the kinematic equations that describe the motion of the filament

backbone and twist, respectively. By taking the time derivative of (3.4), we get the

kinematic equation governing the backbone conformation.
Uy = O(rss-e) (G.11)
= O(rss)-€+rss- O (G.12)

S
= 0,(834) € — (B3 Tyu)Tas - € + Tuy - (185 + e / SIT*)ds')  (G.13)
S
= I, — U8y 1y, + i / S(IIT*)ds’ (G.14)
The first term describes how differential rotation rates produce strain, the second term
is a coupling between bend and stretching and the third term couples twisting motions
with bending.
The kinematic equation for 2 is found in the same way.

Q = 0(é-0s&1) (G.15)
= &;-0,61 —N€3- 11+ & 0s(€14) (G.16)

= (w1é3 — w3é1) . (Qgéz — Qzé?,) —Qeég - I¢s + &y - (95 (w3é2 — (UQég)

(G.17)
= w1y — OBy Ty, +wsy — wods - (8] — D18y) (G.18)
= w3y — (€3-15)Q — w1y + wally (G.19)
= w, — 0831y, + S(TI) (G.20)

where in the last line w = w3 has been used to simplify the notation. The last term in
this equation is the coupling between twist and bend. It describes how writhing motions
affect the twist in a filament and can act as either a sink or a source for twist. It can be
shown that this writhetracking piece can be rewritten as F(¥*II) = (r; X ry,) - Iy .

To complete the dynamics, we must think in terms of a Hamiltonian-type dynamics.
What we have just derived accounts for the first order position equations from a Hamil-

tonian system. What we need then is the first order momentum equations. To get these
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we must define our dynamics. If we are to explain the overdamped world in which cells
live, then we set forces per length proportional to momenta. In our language, the viscous

force per length can be related to II by

f = (rg (G.21)
£, = (ry, (G.22)
f, = (ryy— (8314, (G.23)
f,oe = (II (G.24)

Plugging in this final equation for II into the kinematic equation for ¥ gives back the
result found in [38].

If we want to do inertial dynamics for the filament, then we would use that pry = f
where p is the mass per length of the filament. Following the same procedure that we

just used (but for simplicity using that space and time derivatives commute)

f, = pru, (G.25)
— prep (G.26)
= p 0o (R(IT"¢)) (G.27)
= p(R(Te) - |TPes +i(9, — w)R(Te) ) (G.28)
f,oe = p(IL +ill(9, — w)) (G.29)
= p(Ht—f—iH / S%(Hlﬂ*)ds’) (G.30)

Once f has been specified, this equation and the kinematic equation for ¥ finish the
U dynamic equations. To complete the dynamics, similar expressions must be derived for
the twist dynamics. In the viscous case, these are (,w = m where m is the torque about
the tangent vector per unit length and ¢, is the rotational drag coefficient. In the inertial

case, m = 2Iw; with I being the moment of inertia about the tangent vector.
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Appendix H

Correction to the Block Angle

When dealing with filaments whose unstressed state is straight, it is natural to use
the position of the backbone of the filament to describe the conformation (and stresses)
in the fiber. One of the most used parameterizations in this description is the Frenet-
Serret (F-S) frame, where an orthonormal triad is created using the vectors £ = r;, i,

and b = £ x A. § is the tangent vector and the other vectors are defined through the

equations:
ts = ki (H.1)
A, = —xbt+7b (H.2)
b, = —ri (H.3)

where k is the curvature and 7 is the torsion. However, when the filaments unstressed
state is helical, it would seem that the helix axis is just as useful for describing the
conformation of the filament as the backbone. In the DNA literature, this is actually the
preferred way to describe the shape of the DNA polymer. In DNA, there is a separation of
scales that makes this description the most useful. Since the radius of curvature and the
pitch are orders of magnitude smaller than the length, most interesting bending stresses
occur on scales much larger than the preferred curvature. However, with bacterial flagella,
the pitch and radius of curvature are both only an order of magnitude smaller than the
length of the filament. This means that there is not the strong separation of length scales
that was so useful for DNA. Yet, it still seems that a natural description of the flagella
can be made by describing the position of the helical axis. This description will also
prove to be useful for describing the Block angle that is seen in bacterial flagella, as well
as corrections to this angle from finite width fronts.

To begin to describe the position of a naturally bent filament, it is important to notice

that any portion of a bent filament can be described as a piece of a helix with radius
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of curvature, R = x/(xk% + 72), and pitch, P = 277/(k? + 72). Using this F-S type
description, we can define the axis of this helical segment by the unit vector:

~

. Tt kb
z = + T
(k2 +72)2

(H.4)

(k2 + 7'2)%
where £ = r, is the tangent vector and b is the F-S binormal vector. A orthonormal triad
can be made by noting that the F-S normal vector, 1i, is perpendicular to z. Therefore,
the triad is completed by defining X = i X Z. The next thing that is needed is to describe

the spatial evolution of these vectors.

t b
A R er=r) (1.5)
(k2 +72)2 (K2 +72)2
= (K2 +72) 3 (st + kD) — (k2 + 72) 2 (1t + kD) (kKs +775)  (H.6)
= (K + 72)_% (K215t + 72K5b — KTRst — KTT,D) (H.7)
_ TR g g s
(2 +72)]
KTs — KsT .
= ——v H.
(k2 + 72) * (H.9)

In a similar fashion it can be shown that:

“ KRTg — RKgT 1.
Xs = —ﬁ zZ + (HQ + 7'2)2 n (H].O)
i, = —(K2+79)7 % (H.11)

So, we have arrived at a new F-S description that describes the position of the helix axis
rather than the backbone of the filament. In this new description, we can define a new
curvature that describes how the helix axis is bent by K = 7, — ks7/(k% +72) and a new

. 1 . . .
torsion 7 = (k2 + 72)2. Our new equations can be rewritten in F-S form as:

7, = K% (H.12)
%, = —Ki+Th (H.13)
h, = —Tx (H.14)

It is clear that K = 0 when s and 7 are constant. This implies that Z only rotates when
ks # 0 or 75 # 0. In other words, the helix axis remains straight unless the curvature or

torsion are changing.
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To describe the block angle that is seen in flagella when two helices of differing torsion
are joined, we define Zy to be the direction of the helix axis at one end of the flagella.
The angle between this axis and the helix axis at any other point along the flagella is
then given by cos (a (s)) = Zo - Z(s). Taking a spatial derivative yields an equation that

describes how this angle varies along the filament.

—agsina = Zg- 2 (H.15)
— Kio-% (H.16)
= Ksinacosf (H.17)

where 0 is the angle through which X rotates into fi. This gives
as =—Kcosb . (H.18)

If we assume that the junction width between the two helices is zero, then X will not
rotate into i at all as we pass from one helix to the next. In this case, oy = —K. Writing
this out explicitly:
L
KTs — KgT
o= — ————ds H.19

/0 (k% + 72) ( )

In our simplest picture of bistable helices, the curvature remains constant and the torsion

changes. Therefore,

L ks
a = —/O mds (H.20)
_ [ H.21
= Jw @ (21
= tan” 1(74/k) —tan™ 1(7_/K) (H.22)

giving the block angle for a front of zero width, with 7y = 7(0) and 7— = 7(L). However,
if we would like to calculate the correction to this, then we need to expand (H.18), in

terms of #. The first correction to the block angle comes from

a =~ —/LIC<1—9—2>ds (H.23)
0 2

L xp2
~ —I—/ % ds (H.24)
0
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Since 6 is the angle that X rotates into i, when there is a zero front width, this can be

found from —@,sinf = %Xy - X = 7T sinf, and, therefore,

S
0 ~ — / Tds (H.25)
0
S
~ — / (k2 +72)3 do (H.26)
0
~ (k?+ 7'2)% s (H.27)
Plugging this into (H.24) gives
L
a—ap / skTs ds (H.28)
0

where it has, once again, been used that ks = 0. We can solve this equation by noting
that a bistable twist potential gives a front with a torsional shape that is given by 7 =
74 tanh(s/2¢) where £ is a parameter that fixes the front width. With this form for 7,

7y = (14 /2€)/ cosh?(s/2€). Since this function is sharply peaked at zero, we can take our

integration limits out to oo and set 74 = 7(—o0) and 7— = 7(00). This leads to the
equation
KTy [ s? ds
— — —_— H.29
e 2¢ ) o« cosh?(s/2¢) ( )
~ 2kTLET(3)¢(2) (H.30)
~ (27%/3)kT, E2 (H.31)

A numerical integration of the basis vectors with the given torsion was done and shows
good agreement with this equation at small values of ¢ (See Fig. H.1).

These calculations, so far, have all been done within in the F-S frame. Though using
the F-S frame has become fairly standard, it is more natural to use the material frame to
describe the shape of a filament. To extend these calculations over to the material frame,

we redefine the basis vectors as
z = Q/|Q] (H.32)
b= (81— 218:)/(QF +03)? (H.33)
% = (03 (81+M8y) — (03 +03) &) /|0)(0F + 93) (H.34)
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0=0g a-0p
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Figure H.1: (a) Numerical and Analytic results for the deviation in the block angle due

to a finite width front. (b) shows the deviation that occurs at large €. Figure courtesy of
A. Goriely.
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Appendix I

Bistable Parameters - From Hotani’s data

If we assume a bistable potential, we can derive the parameters that go into the twist
energy functional from Hotani’s data [11]. Hotani observed that the pitch and radius
of the normal state of flagella was 2.3um and 0.23um, respectively. He also observed
that the semi-coiled state had a pitch and radius of 1.24um and 0.26um, respectively.
This corresponds to a twist density of 1.96ym™" for the normal state and 1.84um™' for
the semi-coiled. It was also observed that it required a torque of roughly 1x10~2erg to

induce the transition from normal to semi-coiled. Assuming a twist energy functional of:

o bz cos Y 2)
= — -+ -0+ -Q 1.1
5/(29+3 + 204+ 202) as (L1)
the first three parameters a, b, and ¢ can be approximated as:
12.0V,
c = (1.2)
Q3 (1094 — Q)
b = —c(Q4+9Q) (1.3)
a = Q0 ¢ (I.4)

where . is the twist density for the normal state, 2_ is the twist density for the
semi-coiled state, and Vj, is the energy barrier for the normal state. Approximating the
energy barrier as V, = 7€), where 7 is the torque required to cause the transition, we
can solve for these parameters, with V, ~ 10~7 erg/cm, gives ¢ = 7.4 x 10~?° erg-cm?,
b= —8.8 x 10~ 22erg-cm?, and a = —2.7 x 10~ 'Berg-cm.

From this information and the upper bound that we set on the front width, &, we can
estimate the last parameter, v = (2a)%§ =1.9 x 10_13erg%-cm%, with ¢ ~ 80nm.

Hotani’s data actually gives four values to fit, Qy, Q_, V4, and AV the potential
difference between the €, state and the Q_ state. The above mentioned parameters
underestimate the observed AV by about an order of magnitude. Therefore, a more

realistic twist potential may involve a linear piece as well,

_ a2 93 €t | Y2
5-/(dQ+2Q +20° 420 +2QS>ds. (L5)
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Appendix J

Stretching a Bistable Helix

To begin to make predictions for how a bistable helix is different than a normal one,
the simplest problem that can be addressed is that of stretching a spring that has a
bistable potential in the twist. We start with the moment and force equations for a

bistable helix,

M = A[(9-00)&+ (9 -09) &)+ (%3) &3 (J.1)

Ms = —égXF (J2)

If we want to examine the extension that occurs when a bistable helix is under a
tension, F, directed along its axis, we can use the result that the axis of the helix is given

by z = Q/|Q2|. This gives that:

Q081 — N8
2
where F = F'z. Combining this with Eq. 2, gives three coupled ODE’s:

M, — [ F (1.3)

A0~ 250 — 0] + 0, ((%3) _ (%) F (7.4)
A [QQ,S +Q5(Q — Q?)] — ((5%3) - - (%) F (J.5)
((%3) + 42200 - 0.09] = 0 (3.6)

Switching to the complex notation, 1) = Q; + i and % = QY +iQY:

(:) - ((W fa)ﬂ U0

(o). = FTmlww) (18)

Alps+iQ3( — 0| = i
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If we deform the spring in such a way as to create a new helix with different pitch

and radius, then ¥, = 0, and:

AQ3(yp —9°) =9 [((%3) - (W)] (J.9)

To find how much the spring is stretched, we need a geometrical relation between 1,
Q3, and the distance that the spring is stretched. This we can derive from the assumption
that we have a helix. This implies that €3 is constant, or (6£/6Q3), = 0. Also, if we
define the total contour length of the helix as L;, the actual length along the axis as L,
and the unstretched axial length as Lg, then we can use the fact that for one turn the
contour length is £ = 2r/ (|1|? + Q%)% and the axial distance is £, = 27Q3/ (|¢]? + Q3).
This implies that the number of turns, IV, which remains constant as long as there are no

induced chirality inversions, is given by N = L;/¢ and L = N/, . This also implies that:
0F = (27 N/L;)? — 4| (J.10)
and therefore:

L n (<27TN/27LT33:_|¢|2)5 oy

- I, (1 - (;WLJ:[)ZY (J.12)

where = |9|. And therefore:

o = () (- @) (1.13)
Qs — % (7.14)
This gives that:
ANz~ 10P) 6 -0 =y ((a2) - gt (115
() em 5 = () o) 09

1
2rNAL L} —L3\*\ _ 6& FL,
CE) (- (520)) - (()-2%) o



Normal Spring
For a normal spring, (6€/0Q3) = C(Q3 — Q9). This gives that:

1
2rNAL L? - L3\? o FL
./ — = (02— QY —
( L )(1 (L%-L? O =) - o0y

1 ~
L (BA-L3\* _T(L-Ly) _FL
IZ-17? L Am2N2L

or:
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(J.18)

(J.19)

where I' = C'/A and F= FL}/A. This equation is the same as what has previously been

derived [39].
Bistable Spring

If we assume a bistable twist potential, V() = a/2Q? + b/3Q3 + ¢/4Q* (where the 3

has been dropped for convenience), this changes the extension equation as:

1
2rNAL I? —12\? FIL,
) [1- (== =0 b + cQ?) —
( % )( (L%—L?)) (a+0+ V) - 578

or:

1 ~
) L? - 12\? _~+5<27rNL> +6<27TNL)2_ FL;
2 - L7 42 N?L

where & = z/A, and F = FL}/A.

(J.20)

(J.21)
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Appendix K

Fiber Dynamics with an Attached Bead

The drag per length on a fiber goes as f4 = (| v where (| = 4mn/(In(L/2a)+ 3) is the
drag coefficient of a filament of radius a as calculated by slender body hydrodynamics.
The drag on a bead moving at velocity v is £y = (v where (, = 67nR with R the
radius of the bead. Therefore, the ratio of the drag of the fiber to that of the bead is
approximately:

;:—j: e % [ln(L/2a) + %] (K.1)
For a bead of radius 1pym and a fiber of length 30um, this gives that Fy/f4L =~ 0.16, which

Q

implies that the drag on the bead is not negligible compared with that on the fiber. This
means that we should take the force of the bead into account when doing calculations.
This can be done straightforwardly. The boundary conditions at the clamped end remain
the same, y(0) = y(0) = 0. The bead end remains torqueless, y;;(L) = 0, but there
is now a force at the end, which implies Ays,;(L) = F;. These boundary conditions are
written out under the assumption that there is a small amplitude displacement. The

equation of motion for this displacement is:

CLye = —Ayag (K.2)

From this we can rewrite the force boundary condition as: ysz(L) = —((p/C1)yaz(L).

Using biharmonic functions for y and the free end boundary conditions gives:
y(z) = a(cos(kz) — cosh(kz)) + b(sin(kz) — sinh(kx)) (K.3)
and the last two boundary conditions can be written as:
a(cos(kL) + cosh(kL)) + b(sin(kL) + sinh(kL)) = 0 (K.4)

(a + bekL) (sin(kL) — sinh(kL)) = (b — aekL) cos(kL) + (b+ aekL) cosh(kL)  (K.5)
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Figure K.1: Variation in kL, where k1 is the wavenumber of the first mode, with e.

These equations lead to a solvability condition on % of:
1 + cos(kL) cosh(kL) = ekL(cosh(kL) sin(kL) — cos(kL) sinh(kL)) (K.6)

Therefore, the new problem of calculating the bending modulus, A, from the relax-
ation time, boils down to solving the above equation for k, since we can separate the
dynamic equation by parts, y(z,t)/yo = f(z)T(t), where f(z) are the above biharmonic

functions normalized to an end amplitude of 1, which gives:
T(t) ~ e~ (ARY/CL1 (K.7)

In other words, it is expected that a fiber, in a viscous fluid, that is bent slightly will

relax back to its unstressed state with a characteristic decay time given by:

_ G
T= AR (K.8)

where k; is the first (smallest) wave number found from the solution of the transcendental

equation (K.6).
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