The Mar(e)k of QGP: Strangeness and Entropy

Jan Rafelski

Department of Physics, University of Arizona, Tucson, AZ

CPOD, WROCŁAW, June 2, 2016

Presented in celebration of Marek Gaździcki contributions to the study of quark-gluon plasma phase of matter, and its strangeness and entropy signature, on occasion of his 60th birthday.
1964/65: Two new fundamental ideas

- Quarks → Standard Model of Particle Physics
- Hagedorn Temperature → New State of Elementary Matter

Merging in 1979/80 into Quark-Gluon Plasma

Topics today:
1. From Hagedorn temperature to heavy ion collisions
2. Strangeness and how Marek found his destiny
3. Cooking plasma and the horn

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP: Strangeness and Entropy
Hagedorn exponential mass spectrum: boundary of a new phase of matter

In this statistical-thermodynamical approach to strong interactions at high energies it is assumed that higher and higher resonances of strongly interacting particles occur and take part in the thermodynamics as if they were particles. For $n \to \infty$ these objects are themselves very similar to those which shall be described by this thermodynamics. Expressed in a elegant way: "We describe by thermodynamics fire-balls which consist of fire-balls, which consist of fire-balls, which...". This principle, which could be called "asymptotic bootstrap," leads to a self-consistency requirement for the asymptotic form of the mass spectrum. The equation following from this requirement has only a solution if the mass spectrum grows exponentially:

$$\rho(x) \sim \text{const.} x^{-5/2} \exp(x/T_0).$$

T_0 is a remarkable quantity: the partition function corresponding to the above $\rho(x)$ diverges for $x \to T_0$. T_0 is therefore the highest possible temperature for strong interactions. It should - via a Maxwell-Boltzmann law - govern the thermal distribution of all high-energy collisions of hadrons (including e.g., form factors, etc.). There is experimental evidence for that, and then T_0 is about 150 MeV ($\approx 10^{12}$ K). With this value of T_0 the asymptotic mass spectrum of our theory has a good chance to be the correct extrapolation of the experimentally known spectrum.
Experimental mass spectrum defines T_H

To fix T_H in a limited range of mass need prescribe value of a obtained from SBM. In 1978 we noted that at T_H sound velocity vanishes. This creates another way of fixing T_H both in experiment and in lattice QCD and when this is done, the critical power a is also determined.
From T_H to RHI collisions

Strangeness and how Marek found his destiny

Cooking plasma and the horn

Hagedorn Temperature T_H

Singular point of partition function

\[Z_1(\beta, V) = \int \frac{2V_{\mu}P_{\mu}}{(2\pi)^3} \tau(p^2) e^{-\beta p^2} d^4p \]

Inserting $1 = \int \delta_0(m^2 - p^2) dm^2$

Replacing $\tau(m^2) dm^2$ by $\rho(m) dm$

\[Z_1(\beta, V) = \frac{V_{\text{ex}}}{2\pi^2} \int m^2 \rho(m) K_2(m\beta) dm \]

\[Z_1(\beta, V) \sim C \int_0^{\infty} m^{3/2 - a} e^{-(\beta - \beta_0)m} dm + C. \]

\[Z_1(\beta, V) \sim \begin{cases} C + C\Delta T^{a-5/2}, & a \neq 5/2 \\ C - \ln \frac{\Delta T}{T_0}, & a = 5/2 \end{cases} \]

energy density diverges for $a < 7/2$. Thus only for $a < 7/2$ can we expect T_0 a maximum temperature.

From T_H to RHI collisions

Strangeness and how Marek found his destiny

Cooking plasma and the horn

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP: Strangeness and Entropy

Melting Hadrons, Boiling Quarks: From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN. With a Tribute to Rolf Hagedorn

By Johann Rafelski (ed.)

Springer

The statistical bootstrap model (SBM), the exponential rise of the hadron spectrum, and the existence of a limiting temperature as the ultimate indicator for the end of ordinary hadron physics, will always be associated with the name of Rolf Hagedorn. He showed that hadron physics contains its own limit, and we know today that this limit signals quark deconfinement and the start of a new regime of strong-interaction physics.

This book is edited by Johann Rafelski, who was a long-time collaborator with Hagedorn and took part in many of the early conceptual developments of the SBM. It may perhaps be best characterised by pointing out what it is not. It is not a collection of review articles on the physics of the SBM and related topics, which could be given to newcomers as an introduction to the field. It is not a collection of reprints

relativistic heavy-ion programme at CERN that took place in the early 1980s. It starts with his thoughts about a possible programme of this kind, presented at the workshop on future relativistic heavy-ion experiments, held at the Gesellschaft fuer Schwerionenforschung (GSI). It also includes the draft minutes of the 1982 CERN SPC meeting, and some early works on strangeness production as an indicator for quark–gluon plasma formation, as put forward after many years by Rafelski.

The book is undoubtedly an ideal companion to all those who wish to recall the birth of one of the main areas of today's concepts in high-energy physics, and it is definitely a well-deserved credit to one of the great pioneers in their development.

Frithjof Karsch, Bielefeld University, Germany.

Bookshelf

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP: Strangeness and Entropy
First strangeness signature 1980: ratio of \bar{s}/\bar{q} in $\bar{\Lambda}/\bar{p}$ triggers Marek's strange interest!

What we intend to show is that there are many more \bar{s} quarks than antiquarks of each light flavour. Indeed:

$$\frac{\bar{s}}{\bar{q}} = \frac{1}{2} \left(\frac{m_s}{T} \right)^2 K_2 \left(\frac{m_s}{T} \right) e^{\mu_s/3T}$$

The function $x^2 K_2(x)$ is, for example, tabulated in Ref. 15. For $x = \frac{m_s}{T}$ between 1.5 and 2, it varies between 1.3 and 1. Thus, we almost always have more \bar{s} than \bar{q} quarks and, in many cases of interest, $\bar{s}/\bar{q} \sim 5$. As $\mu \downarrow 0$ there are about as many \bar{u} and \bar{d} quarks as there are \bar{s} quarks.

In *Statistical mechanics of quarks and hadrons* proceedings of Bielefeld, August 24-31, 1980 / edited by Helmut Satz picked up by Marek in Dubna . . .
From T_H to RHIC collisions

Strangeness and how Marek found his destiny

Cooking plasma and the horn

Cooking strange quarks → strange antibaryons

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP: Strangeness and Entropy
A first meeting September 1988 with RHI data

Joint MG+JR S+S analysis paper 1994: features $\bar{\Lambda}/\bar{p}$

Λ/\bar{p}-ratio near midrapidity in proton-proton, minimum bias proton-nucleus and central nucleus-nucleus collisions at 200 GeV per nucleon as a function of the rapidity density of negatively charged hadrons at midrapidity.

Chemical freeze-out conditions in central S-S collisions at 200 A GeV

Josef Sollfrank, Marek Gaździcki

Received 5 August 1993; Communicated by J. Rafelski

Abstract. We determine the chemical freeze-out parameters of hadronic matter formed in central S-S collisions at 200 A GeV, analyzing data from the NA35 collaboration at CERN. In particular we study the quark (baryon number) and strange quark fugacities, as well as the strange quark phase-space occupancy and the freeze-out temperature.
Largest medium effect: Strange antibaryons

![Graph showing yield vs. \((N_{\text{part}})\) relative to pp/p-Be for Pb-Pb at \(\sqrt{s_{\text{NN}}} = 2.76\) TeV, with data from NA57 Pb-Pb, p-Pb at 17.2 GeV, STAR Au-Au at 200 GeV.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP: Strangeness and Entropy
(FERMI) STATISTICAL HADRONIZATION MODEL (SHM)

Very strong interactions: equal hadron production strength irrespective of produced hadron type particle yields depending only on the available phase space

- Fermi: Micro-canonical phase space
 - sharp energy and sharp number of particles
 - E. Fermi, Prog.Theor.Phys. 5 (1950) 570: HOWEVER
 - Experiments report event-average rapidity particle abundances, model should describe an average event

- Canonical phase space: sharp number of particles
 - ensemble average energy $E \rightarrow T$ temperature
 - T could be, but needs not to be, a kinetic process temperature

- Grand-canonical – ensemble average energy and number of particles: $N \rightarrow \mu \Leftrightarrow \Upsilon = e^{(\mu/T)}$

Our interest in the bulk thermal properties of the source evaluated independent from complex transverse dynamics is the reason to analyze integrated spectra.
Fits 2003-2008 as a function of $\sqrt{s_{NN}}$ and A

Interest in energy cost of strangeness pair E/s as it may show change in reaction mechanism.
Why relative s/S

Relative s/S yield measures the number of active degrees of freedom and the degree of relaxation when strangeness production freezes-out. Perturbative expression in chemical equilibrium:

$$\frac{s}{S} = \frac{gs^2}{2\pi^2} T^3 \frac{(m_s/T)^2 K_2(m_s/T)}{(g^2 \pi^2 /45) T^3 + (g_s n_f / 6) \mu_q^2 T} \approx \frac{1}{35} = 0.0286$$

much of $\mathcal{O}(\alpha_s)$ interaction effect cancels out. When considered $s/S \to 1/31 = 0.0323$. Now introduce QGP nonequilibrium

$$\frac{s}{S} = \frac{0.03 \gamma_s^{QGP}}{0.4\gamma_G + 0.1\gamma_s^{QGP} + 0.5\gamma_q^{QGP} + 0.05\gamma_q^{QGP} (\ln \lambda_q)^2} \to 0.03 \gamma_s^{QGP}.$$
Two phases: Difference of equilibrium

- QGP
- HG

\[m_s = 125 \pm 35 \text{ MeV} \]
From T_H to RHIC collisions

Strangeness and how Marek found his destiny

Cooking plasma and the horn

AGS, SPS, RHIC bulk properties \Rightarrow Fit to ALICE data

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP: Strangeness and Entropy
From T_H to RHI collisions

Strangeness and how Marek found his destiny

Cooking plasma and the horn

COMPARISON ACROSS ENERGY

SPS-RHIC-LHC: SHM PARAMETERS

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP: Strangeness and Entropy
Consistency with Lattice-QCD

Chemical freeze-out MUST be below lattice results. For direct free-streaming hadron emission from QGP, \(T \)-SHM is the QGP source temperature, there cannot be full chemical equilibrium.
From T_H to RHIC collisions

Strangeness and how Marek found his destiny

Cooking plasma and the horn

Use of nonequilibrium and the rôle of $s/S =$ strangeness/multiplicity

To describe the horn we need $\gamma_q \neq 1$

Looking at the fit χ^2 we see that between 20 and 30GeV results favor that γ_q jumps from highly unsaturated to fully saturated: from $\gamma_q < 0.5$ to $\gamma_q > 1.5$. This produces the horn (below). The individual fits relevant to understanding how the horn is created have good quality - see $P\%$.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP: Strangeness and Entropy
Marek’s Discovery: The HORN is doing well today

Evidence of drastic change in matter properties – far from equilibrium hadrons turn at the peak into a quark-gluon plasma ball in near equilibrium. Use of non-equilibrium physics essential in understanding the Horn and understanding the threshold of QGP formation.
Summary

- 50 years ago particle production in pp reactions prompted introduction of Hagedorn Temperature T_H; soon after recognized as the critical temperature at which matter surrounding us dissolves into the fundamental phase of quarks and gluons – the QGP.

- Global effort to discover QGP - followed. Strangeness and Marek’s lifespan of dedicated research played a pivotal role. The predicted signatures confirmed – not only strange antibaryons! New ideas emerge showing QGP consistency. While some people will keep arguing, . . .

- . . . overall there is little doubt that the totality of evidence is evidence for QGP phase of matter; each small item in the long list can be explained in some other way but all of the list emerges in a simple new paradigm.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

The Mar(e)k of QGP:Strangeness and Entropy