PHYS 528 — Spring 2004

Homework # 2

Due Feb 17

1. A magnetic system of N spins is in thermodynamic equilibrium at temperature T. Let μ be the magnetic moment of each spin; and let m be the total magnetic moment per spin, so $-\mu < m < \mu$. The alleged free energy per spin is

$$a(m, T) = \lambda(T) \left[\left(\frac{m}{\mu} \right)^4 - \left(\frac{m}{\mu} \right)^2 \right] ,$$

(1)

where $\lambda(T) > 0$. Is this free energy acceptable? Why? Include a response function in your discussion.

2. A substance is found to have two phases, N and S. In the normal phase N, the total magnetic moment M is negligible. At a fixed temperature $T < T_c$, as the external magnetic field B_0 is lowered below the field

$$B_i(T) = B_i(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right] ,$$

(2)

the normal state undergoes a phase transition to a new phase S. In the superconducting phase S, the magnetic field inside the material $B = B_0 + \mu_0m$ —where m is the total magnetic moment per particle (magnetization)— vanishes (“Meißner effect”).

(a) Find the difference in Gibbs free energies between the two phases at a temperature $T < T_c$, $G_S(T, B_0) - G_N(T, B_0)$.
(b) At $B_0 \leq B_i(0)$, compute the latent heat of transition l from the N to S phase.
(c) At $B_0 = 0$, compute the discontinuity in the specific heat as the material transforms from the N to S phase. Is the phase transition first or second order at $B_0 = 0$?

3. Consider a closed box of fixed volume V and internal energy U containing black-body radiation and a black hole of mass M. The thermodynamic states of a black hole can be described by two EsOS (here $c = 1$):

$$U_h = M,$$

(3)

$$S_h = 4\pi M^2$$

(4)
(since the entropy $S_h = A/4$ in terms of the area of the black hole, $A = 16\pi M^2$). Use the corresponding equations for radiation (e.g., from problem 2 in HW #1), neglecting any changes due to the presence of the black hole.
(a) Find, for different values of U and V, the values of M so that radiation and hole are in equilibrium at a temperature T.
(b) Sketch the graph $T = T(U)$ for the system, also displaying lines of superheating and supercooling. Discuss the result.

4. For a van der Waals fluid,
(a) Calculate the Helmholtz free energy per mole, $A(T, V)/n = a(T, v = V/n)$.
(b) Expand the function
$$g(T, P; v) = a(T, v) + Pv$$
in powers of $\eta = v - v_c$, where v_c is the critical volume per mole. Carry out the expansion to fourth order, and eliminate the cubic term by a shift in η. Find the coefficients of η, η^2, and η^4 in terms of $t = (T - T_c)/T_c$ and $p = (P - P_c)/P_c$, where T_c (P_c) is the critical temperature (pressure).
(c) Expand the coefficients for small t and p, and show they satisfy the behavior assumed in the Ginzburg-Landau theory.
(d) Sketch $g(T, P; v)$ as function of η near (above and below) the critical point. Is η a good order parameter? Why?

5. Calculate the critical exponents (degree of the critical isotherm δ, degree of the coexistence curve β, exponents of heat capacity α, α', and exponents of isothermal compressibility γ, γ') of a van der Waals fluid.