Variation of Pressure with Depth (For a Liquid)

- Consider a liquid at rest near the Earth’s surface:

Consider the forces acting on this tiny element of liquid dm

- Since the liquid remains at rest, the net force must be zero:

$$F_x = A_{\text{side}} (p_1 - p_2) = 0$$
$$F_y = A_{\text{top}} p_4 - dmg - A_{\text{bot}} p_3 = 0$$

- So the pressure changes only with depth (not horizontal position)
To determine the variation of p with depth (y) we assign dm a thickness dy, and note that $A_{\text{top}} = A_{\text{bot}}$ (we’ll just call it A from now on)

- So that $dm = \rho A dy$

Our force-balance equation is then:

\[
Ap(y) - dmg - Ap(y + dy) = 0
\]

\[
A[p(y) - p(y + dy)] = \rho g A dy
\]

\[
-dp = \rho g dy
\]

\[
p(y) = \int -\rho g dy = -\rho gy + C = -\rho gy + p_o
\]

So the pressure increases linearly with depth in the liquid

- Note that we assumed ρ was constant, which means we approximated the fluid as completely incompressible
Variation of Pressure with Depth (For a Gas)

- If the fluid is a gas, we can no longer assume that the density is the same everywhere.
- To proceed, we make the assumption that the temperature of the gas is constant.
 - Not really true for the Earth’s atmosphere…
- Then the ideal gas law says:
 \[pV = nRT \]
 These are all constants
- So,
 \[
 p \frac{m}{\rho} = C \\
 p = C' \rho \\
 \rho(y) = \rho_o \frac{p}{p_o}
 \]
The force-balance equation in the y direction is the same as that for a liquid, leading to:

$$dp = -\rho(y)g\,dy = -\rho_o \frac{p}{p_o}g\,dy$$

The quantity $a \equiv g \frac{p_o}{\rho_o}$ determines how quickly p decreases with increasing h.

For Earth’s atmosphere, $a = 8.55\text{km}$
Pascal’s Principle

- Consider a flexible container filled with fluid:
- The pressure varies throughout the fluid due to gravity
- Now, we apply an additional force to any part of the container:
- At the area where the force is applied, the pressure of the fluid must increase by Δp (to keep the container wall in equilibrium)

Pascal’s principal states that when this happens, the pressure everywhere in the fluid increases by Δp
Taking Advantage of Pascal’s Principal

- Let’s say our container looks like this:

\[\text{This arm has cross-sectional area } A_S \]

- We apply a force \(F_1 \) to the left piston
 - This in turn applies an additional pressure \(\Delta p = \frac{F_1}{A_S} \) to the fluid
- The upward force on the right-hand piston increases by:

\[F_2 = \Delta p A_L = F_1 \frac{A_L}{A_S} \]
• We see that the liquid acts as a “force multiplier”
 – A small external force applied to one part of the fluid results in a large force being applied somewhere else
 – This is how hydraulic systems work
Archimedes’ Principle

• Let’s consider now the forces acting throughout a static fluid

• Look at a small element dV of the fluid (with mass dm):

 • F_B is the upwards “buoyant” force exerted by the rest of the fluid on dm
 - We know this force must exist, since dm is not accelerating downward
 - We also know that the magnitude of the buoyant force is equal to the weight of the fluid contained in dm
• What happens if we replace the fluid in dV with some other material (with different density, but same size and shape)?

 i.e., the new object “displaces” the fluid in dV

• The rest of the fluid isn’t “aware” of this change
 – And thus the buoyant force supplied by the fluid doesn’t change

• This leads us to Archimedes’ Principle:

The buoyant force exerted on an object is equal to the weight of the fluid displaced by that object
Floating a Boat

- Archimedes’ principle explains how a boat made of steel can float:
 - The mass of the boat is equal to the mass of the displaced water
 - If the boat is loaded so full that the average density of the material in its volume becomes greater than the density of water, it will sink!
 - Sometimes we also consider the torque produced by the buoyant force
 - For this, we can treat the force as though it acts at the “center of buoyancy”, which is the center of mass of the displaced fluid