Lecture 7: Damped and Driven Oscillations
• Last time, we found for underdamped oscillators:
 \[x(t) = e^{-\beta t} \left[(A_1 + A_2) \cos \omega_1 t + i (A_1 - A_2) \sin \omega_1 t \right] \]

 • A\textsubscript{1} and A\textsubscript{2} are complex numbers, but our answer must be real
 – Implies that A\textsubscript{1} and A\textsubscript{2} are complex conjugates
 – Can write them as: \[A_1 = Ae^{i\delta} \quad A_2 = Ae^{-i\delta} \]

 • We now have:
 \[x(t) = e^{-\beta t} \left[A(\cos \delta + i \sin \delta + \cos \delta - i \sin \delta) \cos \omega_1 t \right. \]
 \[\quad + iA(\cos \delta + i \sin \delta - \cos \delta + i \sin \delta) \sin \omega_1 t \left. \right] \]
 \[= Ae^{-\beta t} \left[2 \cos \delta \cos \omega_1 t - 2 \sin \delta \sin \omega_1 t \right] \]
 \[= 2Ae^{-\beta t} \cos(\omega_1 t + \delta) \]

 • Since we can always redefine the constant A to get rid of the 2 in front of the equation, the general solution is:
 \[x(t) = Ae^{-\beta t} \cos(\omega_1 t + \delta) \]
Properties of underdamped motion

• An underdamped system still oscillates:

Note, though, that the motion is not periodic – it never returns to the same point with the same velocity as before

• The quantity ω_1 can still be related to the time interval between crossings of the x axis

• For light damping, ω_1 is very close to ω_0
Underdamped Motion in Phase Space

- Since the motion is not periodic, we no longer get closed loops. In addition to amplitude, path depends on β:

$$\omega_0 = 0.5, \ A = 100$$

$\beta = 0.05$

$\beta = 0.1$

$\beta = 0.25$
More Damping

• If the damping parameter is large enough that $\sqrt{\beta^2 - \omega_0^2} = 0$ the system is called “critically damped”

• In this case expressions of the form $te^{-\beta t}$ also satisfy the equation of motion, so the general solution is:

$$x(t) = (A + Bt)e^{-\beta t}$$

• From this we see that A is the initial position and $B-\beta A$ is the initial velocity

• In this case the solutions do not oscillate, but can cross the x-axis once if there is a large initial velocity toward equilibrium
• The motion may look like any of the following:

 ![Initial velocity negative](image)
 ![Initial velocity zero](image)
 ![Initial velocity positive](image)

• No matter what the initial conditions are, the system settles to within a given distance of equilibrium faster with critical damping than with any other choice of damping parameter
 – Automobile shock absorbers, for example, should be critically damped
Overdamped Motion

• If β is even larger the system is *overdamped*
• The quantity $\omega_2 \equiv \sqrt{\beta^2 - \omega_o^2}$ is real, so the position as a function of time is given by:

$$x(t) = e^{-\beta t} \left[A_1 e^{\omega_2 t} + A_2 e^{-\omega_2 t} \right]$$

• Features:
 – No hint of oscillatory motion here (ω_2 can’t be interpreted as an angular frequency)
 – Position always approaches equilibrium for large t
 • But not as quickly as a critically-damped system would
 – System can cross $x = 0$ once (as in critically damped case)
Driven Oscillations

- There are many examples in which an external agent applies a force to an oscillator
 - Sometimes essential to intended function (e.g., a radio), sometimes an annoyance (e.g., wind gusts hitting a skyscraper)
- This external force can have any form, but we’ll consider the particular case of a sinusoidal force:

 \[F = F_0 \sin \omega t \]

 This \(\omega \) can be anything we choose – it’s not related to the natural oscillation frequency \(\omega_0 \)

- This means the equation of motion is:

 \[m\ddot{x} + b\dot{x} + kx = F_0 \sin \omega t \]
• After dividing through by \(m \) and redefining the constants, this becomes:

\[
\ddot{x} + 2\beta \dot{x} + \omega^2 x = A \sin \omega t
\]

• This is known as a “linear inhomogeneous equation”

• To solve it, let’s assume that the solution has a form similar to what appears on the right-hand side:

\[
x(t) = C \sin(\omega t + \delta)
\]

• Substituting this into the equation of motion gives:

\[
-C\omega^2 \sin(\omega t + \delta) + 2C \beta \omega \cos(\omega t + \delta) + \omega^2 C \sin(\omega t + \delta) = A \sin \omega t
\]
• Expanding gives:

\[-C \omega^2 [\cos \omega t \sin \delta + \cos \delta \sin \omega t] + 2C \beta \omega [\cos \omega t \cos \delta - \sin \omega t \sin \delta] + \omega^2 C [\cos \omega t \sin \delta + \cos \delta \sin \omega t]\]

\[= A \sin \omega t\]

\[
\cos \omega t \left[-C \omega^2 \sin \delta + 2C \beta \omega \cos \delta + \omega^2 C \sin \delta \right] + \sin \omega t \left[-A - C \omega^2 \cos \delta - 2C \beta \omega \sin \delta + \omega^2 C \cos \delta \right] = 0
\]

• The only way this can be true for all \(t\) is if \(C\) and \(\delta\) are chosen such that both terms in [] are zero
• Starting with the cosine term, we need:

\[2\beta\omega \cos \delta + (\omega_o^2 - \omega^2) \sin \delta = 0 \]

\[\tan \delta = \frac{-2\beta\omega}{(\omega_o^2 - \omega^2)} \]

• From this, we can determine \(\sin \delta \) and \(\cos \delta \), and then find \(C \):

\[A - C(-\omega^2 \cos \delta - 2\beta\omega \sin \delta + \omega_o^2 \cos \delta) = 0 \]

\[C = \frac{A}{(\omega_o^2 - \omega^2) \cos \delta + 2\beta\omega \sin \delta} \]

\[= \frac{A}{(\omega_o^2 - \omega^2) \sqrt{(\omega_o^2 - \omega^2)^2 + 4\beta^2\omega^2} + 2\beta\omega \sqrt{(\omega_o^2 - \omega^2)^2 + 4\beta^2\omega^2}} \]

\[= \frac{A}{\sqrt{(\omega_o^2 - \omega^2)^2 + 4\beta^2\omega^2}} \]
• Putting all of this together, we have the solution:
\[
x(t) = \frac{A}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2}} \sin \left(\omega t - \tan^{-1} \left[\frac{2\beta\omega}{(\omega_0^2 - \omega^2)} \right] \right)
\]

• Looks great, but you may notice a problem – there’s no “freedom” here (recall that \(A = F_o/m \))
 – and surely the motion depends somehow on initial conditions, doesn’t it?

• To see where these come in, consider what happens if we add a term to our solution:
 \[
x'(t) = x(t) + x_c(t)
\]

 where:
 \[
x_c'' + 2\beta x_c' + \omega_o^2 x_c = 0
\]
• This new function also satisfies the equation of motion:

\[
\ddot{x}' + 2\beta \dot{x}' + \omega_o^2 x' = (\ddot{x} + \ddot{x}_c) + 2\beta (\dot{x} + \dot{x}_c) + \omega_o^2 (x + x_c)
\]

\[
= \ddot{x} + 2\beta \dot{x} + \omega_o^2 x + \ddot{x}_c + 2\beta \dot{x}_c + \omega_o^2 x_c
\]

\[
= A \sin \omega t + 0
\]

• But the equation that \(x_c(t) \) satisfies is just the equation for an undriven oscillator
 – So all the solutions we’ve already explored are part of the solution for driven oscillators as well

• Linear inhomogeneous differential equations in general have this property
 – Solution is the sum of a particular solution that depends on the right-hand side of the equation and a complementary solution that gives zero on the right-hand side
• Some other features of the solution:
 1. The complementary function goes as $e^{-\beta t}$
 2. The initial conditions affect only the complementary solution, not the particular solution
• Both of these facts tell us that the complementary solution gives transient effects

After a long time has passed, the oscillator will move as described by the particular solution, no matter what the initial conditions are
Resonance

- The amplitude attained by a driven oscillator depends strongly on the driving frequency
- The maximum occurs at the “resonance frequency”:

\[
\left. \frac{dA}{d\omega} \right|_{\omega_R} = - \frac{1}{2} \frac{-4\omega_R \left(\omega_o^2 - \omega_R^2 \right) + 8\beta^2 \omega_R}{\left[\left(\omega_o^2 - \omega_R^2 \right)^2 + 4\beta^2 \omega_R^2 \right]^{3/2}} = 0
\]

\[
\omega_o^2 - \omega_R^2 = 2\beta^2
\]

\[
\omega_R^2 = \omega_o^2 - 2\beta^2
\]

- The sharpness of the resonance depends on the strength of the damping
Q Factor

- Actually, it’s the ratio of the resonance frequency to the damping parameter that determines the sharpness of the resonance. We define:

\[Q = \frac{\omega_R}{2\beta} = \frac{\sqrt{\omega_o^2 - 2\beta^2}}{2\beta} \]